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Abstract 

Classification and analysis of high-resolution satellite images using conventional tech‑
niques have been limited. This is due to the complex characteristics of the imagery. 
These images are characterized by features such as spectral signatures, complex 
texture and shape, spatial relationships and temporal changes. In this research, we pre‑
sent the performance evaluation and analysis of deep learning approaches based on 
Convolutional Neural Networks and vision transformer towards achieving efficient clas‑
sification of remote sensing satellite images. The CNN-based models explored include 
ResNet, DenseNet, EfficientNet, VGG and InceptionV3. The models were evaluated on 
three publicly available EuroSAT, UCMerced-LandUse and NWPU-RESISC45 datasets 
containing categories of images. The models achieve promising results in accuracy, 
recall, precision and F1-score. This performance demonstrates the feasibility of Deep 
Learning approaches in learning the complex and in-homogeneous features of the 
high-resolution remote sensing images.
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Introduction
In recent years, application of remote sensing images dataset has become more relevant 
in our day-to-day activities. Object detection and image classification from the analy-
sis of multi-temporal high resolution remote sensing satellite imagery has become very 
useful in real-life applications like environmental monitoring, natural disasters and haz-
ardous events prevention, and terrestrial biodiversity analysis [1, 2]. Analysis of remote 
sensing images is challenging due to the complex nature of the images [3]. Development 
of reliable system for the analysis of remote sensing images is therefore very important.

The manual identification and detection of objects and images from remote sensing 
satellite imagery is arduous and costly [3, 4]. There have been several systems created 
to detect objects and classify images from remote sensing imagery [4]. Over the years, 
there have been substantial efforts to incorporate machine learning algorithms into the 
development of systems for the analysis and classification of images in object detec-
tion [3]. Despite advancements in remote sensing tools and object-based image analysis 
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tools for analyzing high spatial and temporal resolution satellite images, the classifica-
tion accuracy of complex images remains inadequate. The primary reason for this inad-
equacy could be due to the high variability in the spectral and spatial features of the 
images, which complicates the classification of heterogeneous land cover classes.

The images are prone to adversarial conditions such as cloud and solar radiance. To 
overcome these issues, several approaches that combine both spectral and spatial fea-
tures in the classification scheme have been proposed in the past. These approaches 
relied on conventional methods like the Markov Random Field (MRF) model [5], Con-
ditional Random Field (CRF) model [6], and Composite Kernel (CK) methods [7]. How-
ever, these models are limited in their ability to extract a vast number of features for 
supervised classification due to the time-consuming feature engineering process [8], 
which demands extensive knowledge for the extraction of manageable features. Addi-
tionally, classification based on hand-crafted spatial features mainly depends on low-
level features, resulting in poor classification outcomes. Furthermore, these models have 
limited generalization capacity.

In recent times, Deep Learning, a sophisticated tool in the field of machine learning, 
has demonstrated its effectiveness in the realm of computer vision and subsequently, 
in remote sensing as well [9]. The conventional machine learning tools such as Support 
Vector Machine (SVM) and Random Forest (RF) [10] which are shallow-structured, 
have major limitations that are addressed by these advanced machine learning algo-
rithms. Prominent deep learning models such as Deep Belief Net (DBN) [11], Stacked 
Auto-Encoder (SAE) [12], and deep Convolutional Neural Network (CNN) [13, 14] have 
shown promising results in several remote sensing applications, including segmenta-
tion, object detection [15], and classification [16]. These models are characterized by 
deep architecture, multi-layered interconnected channels, and a high capacity to learn 
features.

Despite the recent advancements in deep learning techniques and their applications in 
remote sensing, their effectiveness has been largely limited to the classification of high-
resolution satellite and aerial imagery due to the scarcity of available datasets for model 
training and the need for extensive parameter tuning [8]. Recently, vision transform-
ers have been introduced to overcome these limitations by incorporating self-attention 
mechanisms that enable the modeling of semantic relationships between all pairs of pix-
els in an image [17]. Nonetheless, the application of these transformers is computation-
ally expensive, and their efficiency decreases exponentially with the size of the image, 
thereby requiring significant computational resources [18].

In this research, we present deep learning approaches based on Convolutional Neu-
ral Networks and state-of-the-art vision transformers for automatic object detection and 
classification of satellite imagery dataset. We perform some experimental survey and 
comparative analysis of the deep learning based methods. Vision transformer and CNN 
based models such as ResNet, DenseNet, EfficientNet, VGG and InceptionV3 have been 
experimented and evaluated on publicly available EUROSAT, UCMerced-LandUse and 
NWPU-RESISC45 datasets containing categories of object images. The models achieve 
promising results in accuracy, recall, precision and F1-score. The performance demon-
strates the feasibility of Deep Learning methods to learn the complex and heterogeneous 
features of the high resolution remote sensing images.
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Literature review
Characteristics of remote sensing images

Spectral, temporal, and spatial resolution are major features of remote sensing images 
and are important parameters to be considered during remote sensing image classifica-
tion process; 

1.	 Spectral resolution is composed of different wavelengths of electromagnetic radia-
tion.

2.	 Temporal resolution is the time interval between image acquisitions.
3.	 Spatial resolution is the size of a pixel on the ground. These parameters play a critical 

role in identifying different land cover types and monitoring changes in land cover 
over time.

They are complex features on remote sensing images and efficient system must be able 
to effectively process them to achieve accurate classification of remote sensing images by 
focusing on spectral, temporal, and spatial resolution of the images.

There are also other types of remote sensing images based on the nature of the captur-
ing devices. These are categorised into optical, thermal, hyper-spectral, and SAR images: 

1.	 Optical images capture visible and near-infrared regions of the electromagnetic 
spectrum and are the most commonly used remote sensing data for land cover clas-
sification.

2.	 Thermal images capture the thermal radiation emitted by the Earth’s surface and is 
used to detect temperature variations.

3.	 Hyper-spectral images capture a wide range of spectral bands with narrow band-
widths, allowing for the identification of more subtle spectral signatures.

4.	 SAR images use microwave radiation and can penetrate through clouds and vegeta-
tion, making them useful in detecting changes in surface features.

Approaches for classification of remote sensing images

There are different approaches for classification of remote sensing images. These include 
pixel-wise classification and object based classification. 

1.	 Pixel-wise remote sensing image classification is the most commonly used method 
for remote sensing image classification. This method involves assigning a class label 
to each pixel in an image based on its spectral signature. Several classification algo-
rithms have been developed for pixel-wise classification, including maximum likeli-
hood, support vector machines, decision trees, and neural networks.

2.	 Object-based methods: These methods group adjacent pixels together into objects 
and classify these objects based on their spectral and contextual characteristics. 
Examples include OBIA (Object-Based Image Analysis) which is a specific type of 
remote sensing image analysis that uses image segmentation to group adjacent pixels 
into meaningful objects or regions, which are then classified based on their spec-
tral and contextual features. Object-based methods offer several advantages over 
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pixel-based methods, including improved accuracy, reduced noise, and the ability to 
account for spatial context.

The choice of method depends on the specific application and the characteristics of 
the data being analyzed.Remote sensing image classification is an essential task in 
remote sensing, and various methods have been developed to improve the accuracy 
and efficiency of classification. The use of different types of remote sensing data and 
the development of new classification algorithms have enabled better monitoring and 
understanding of the Earth’s surface.

Related works

In recent times, there have been various deep learning methods employed for the clas-
sification of remote sensing images. Bosco et al. [19] proposed a multi-granularity neural 
network encoding architecture based on pre-trained CNNs like InceptionV3, Inception-
ReseNetV2, VGG16, and DenseNet201, with the use of activation functions and ensem-
ble learning to extract features. The model was fine-tuned using InceptionResNetV2 
and VGG16 and was evaluated on two public datasets, UCM and SIRI-WHU, as well 
as another dataset comprising 2112 labeled images collected through the Google Earth 
engine from East Africa Community Countries (EACC), categorized into nine classes. 
Mahdianpari et al. [20] also employed deep learning tools based on CNNs for the clas-
sification of complex wetland classes in Canada using multispectral RapidEye optical 
imagery. They explored seven deep convnets, including DenseNet121, InceptionV3, 
VGG16, VGG19, Xception, ResNet50, and InceptionResNetV2 for wetland classification 
and mapping. The models were evaluated and compared with conventional tools, and 
InceptionResNetV2, ResNet50, and Xception were identified as the top three convnets, 
providing state-of-the-art classification accuracies for complex remote sensing scenes 
such as wetlands. The classification accuracies obtained using Support Vector Machine 
(SVM) and Random Forest (RF) were significantly inferior to those obtained using deep 
learning methods.

Zhou et al. proposed a ResNet-based architecture, ResNet-TP, which utilizes two path-
ways, and was tested on two scene classification datasets, UCM Land Use and NWPU-
RESISC45, exhibiting significant improvements over the existing state-of-the-art 
methods [21]. Furthermore, Zhang et al. proposed a fully convolutional network based 
on DenseNet for remote sensing scene classification, which was compared with various 
state-of-the-art algorithms on multiple datasets, including UCM, AID, OPTIMAL-31, 
and NWPU-RESISC45 [22]. To classify objects and facilities into 63 different classes 
from the IARPA Functional Map of the World (fMoW) dataset, a deep learning sys-
tem was developed by integrating satellite metadata with image features, employing an 
ensemble of convolutional neural networks and additional neural networks, achieving an 
accuracy of % and an F1 score of 0.797 [16]. In another study, Mohanty et al. employed 
five approaches based on U-Net and Mask R-Convolutional Neuronal Networks mod-
els for satellite imagery classification from SpaceNet dataset, using boosting algorithms, 
morphological filter, Conditional Random Fields, and custom losses, which were modi-
fied with training adaptations, achieving an AP of 0.937 and an AR of 0.959 [23].
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Alhichri et  al. [24] proposed a Deep Convolutional Neural Network (CNN) with an 
attention mechanism for scene classification in remote sensing. The novel approach 
computes a new feature map by weighting the original feature maps. The CNN, named 
EfficientNet-B3-Attn-2, was developed by enhancing the pre-trained EfficientNet-B3 
CNN with an attention mechanism. The study demonstrated the effectiveness of the 
proposed approach on six remote sensing datasets including UC Merced, KSA, OPTI-
MAL-31, RSSCN7, WHU-RS19, and AID datasets. The results showed the system’s 
strong performance in accurately classifying remote sensing images and scenes. Yang 
et al. [25] introduced a novel CNN architecture called Multi-Scale Input Spatial Pyra-
mid Pooling Fusion Networks (MSPPF-nets) based on DenseNets for the classification 
of local climate zones (LCZs). The proposed system utilizes the Spatial Pyramid Pooling 
(SPP) layer to extract multi-scale features from various channels and fuse them through 
a multi-branch-input framework. Mu et al. [26] proposed a spectral-spatial classification 
method for hyperspectral images (HSIs) based on deep adaptive feature fusion (SSDF). 
The system fuses two types of HSIs features, edge features extracted by guided filter and 
principal component features extracted by principal component analysis, through deep 
adaptive fusion. The deep features are then further processed by the long short-term 
memory (LSTM) model for classification.

Xu et al. [27] proposed an innovative attention-based pyramid network for the clas-
sification and segmentation of remote sensing datasets. The study employed three differ-
ent attention mechanisms, including attention-based multi-scale fusion, region pyramid 
attention, and cross-scale attention in adaptive atrous spatial pyramid pooling network. 
These attention mechanisms effectively fused spatial and spectral information at dif-
ferent and same scales, addressed geometric size diversity in large-scale remote sens-
ing images and adapted features to diverse contents in a feature-embedded space. The 
attention-based modules were integrated with a spatial feature fusion pyramid network 
(FFPNet) and an end-to-end spatial-spectral FFPNet to establish various feature fusion 
pyramid frameworks. These frameworks aimed to address the spatial problem of high-
resolution remote sensing images and classify hyperspectral images. The proposed sys-
tem was evaluated on two high-resolution remote sensing datasets, ISPRS Vaihingen 
and ISPRS Potsdam, and the results demonstrated the effectiveness of the approach. 
Zhang et al. [28] proposed a novel method for remote sensing scene classification, the 
Remote Sensing Transformer (TRS), which integrates self-attention into ResNet using 
a Multi-Head Self-Attention layer in the bottleneck. The study utilized multiple pure 
Transformer encoders to improve the representation learning performance, completely 
depending on attention. The TRS model was tested on four public remote sensing scene 
datasets, namely UC-Merced, AID, NWPU-RESISC45, and OPTIMAL-31, and the 
results showed higher accuracy.

Some attempts have been made to use deep learning models for the analysis of ther-
mal infrared (TIR) remote sensing images. These models also achieved promising results 
on thermal infrared imagery. For example, Jiang et  al. [29] proposed YOLO models for 
extracting features from a ground based TIR remote sensing images. The research iden-
tified YOLOv5-s as the most effective algorithm with the highest mAP of person and 
car instances at 88.69% and fastest detection speed of 50  FPS. Masouleh et  al. [30] also 
proposed an improved deep learning model based on encoder-decoder structure of 
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convolutional layers and restricted Boltzmann machine for extracting features from UAV-
based thermal infrared imagery. They achieved average precision and average processing 
time of 0.97 and 19.73 s.

Finally, an onboard real-time object detection system for remote sensing images, named 
MSF-SNET, was proposed by Huang et al. [31]. The system is a lightweight one-stage detec-
tor that uses SNET as the backbone network to reduce computational complexity and the 
number of parameters. The system extracts three low-level features from the three stages of 
SNET and further extracts deep features using three convolutional layers to obtain seman-
tic information for large-scale object detection. The deep and low-level features are fused 
to enhance feature representation. The system was evaluated on publicly available NWPU 
VHR-10 dataset and DIOR dataset. Despite the recent advancements in deep CNN-based 
architectures for remote sensing image analysis and classification as discussed in this sec-
tion, their applications are still limited, especially in the classification of very high resolution 
aerial and satellite imagery. Current research has primarily focused on urban area classifica-
tion using CNN-based architectures, with limited exploration of state-of-the-art classifica-
tion tools such as vision transformers for complex high resolution land cover mapping of 
satellite imagery. Complex land cover imagery, such as forests, vegetation, crops, pastures, 
rivers, highways, and residential areas, pose challenges for low classification performance 
and insufficient object detection accuracy due to their high intra-class variance, multi-reso-
lution, multi-spectra, and heterogeneity.

In this research, we perform robust comparative analysis and evaluation of deep learn-
ing approaches based on Convolutional Neural Networks and state-of-the-art vision 
transformers for automatic, data-driven and intelligence based object detection and classifi-
cation of satellite imagery dataset. We investigate the capability of well-known deep CNNs 
in the analysis of high resolution remote sensing images. The main contributions of this 
study are therefore to: 

1.	 Analyze the effectiveness of deep learning models in classifying satellite imagery with 
varying resolutions and spectral bands.

2.	 Investigate the impact of fine-tuning on improving the performance of CNN-based 
deep learning models for high-resolution satellite image classification.

3.	 Compare and contrast the performance of several widely used deep CNNs, such 
as DenseNet121, InceptionV3, VGG16, Efficient-Net, ResNet50, and vision trans-
former, on three distinct publicly available remote sensing datasets comprising of sat-
ellite images: EuroSAT, UCMerced-LandUse, and NWPU-RESISC45.

Thus, this study contributes to the use of deep learning based classification tools for com-
plex high resolution remote sensing satellite imagery and further open up research in the 
application of state-of-the-art for the analysis of these images.

Methods and techniques
Various deep learning architectures have been used in the past for computer vision 
tasks, most especially in the analysis and classification of remote sensing images. In this 
section, we explore five (5) CNN-based deep learning architectures and a vision trans-
former based architecture.
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CNN‑based architectures

We discuss five (5) CNN-based deep learning architectures. They are VGG16, 
ResNet50, IncetionV3, EfficientNet and DenseNet121. The composition of each archi-
tecture has been discussed below:

ResNet

The ResNet system employs deep residual networks to improve the classification per-
formance by reducing the vanishing gradient problems of deeper network through 
a residual process. The ResNet architecture [32] adopts residual learning to every 
few stacked layers. The architecture also leverages on stacking convolutional layers 
for learning and extracting features. The ResNet model employed in this research is 
composed of five blocks, with each block having the same size of convolutional layer 
except the first block that performs down-sampling. Basically, each block is com-
posed of a composite function comprising batch normalization (BN), a non-linear 
transformation unit, rectified linear unit function (ReLU) and a Convolution layer. A 
skip-connection is used that bypasses the non-linear transformations with an iden-
tity function. Deep features are extracted and down-sampled using integrated pooling 
units of Maxpool, AdaptiveAvgPool, and AdaptiveMaxPool.

The operation is defined as:

where we consider the input and output vectors of a layer as x and y respectively, then 
the function F(x,Wi) denotes the residual mapping that needs to be learned through 
various convolutional layers and operators. Following this, the addition of feature maps 
takes place element-wise, channel by channel.

Composition of the blocks is further described in the Table 1 where n is the number 
of the block with the same composition, F are the operators and the resolutions which 
represent the sizes are denoted with H and W. These are further described in Fig. 1 
showing the detailed layout diagram of the ResNet50 architecture.

The composition of the parameters in this model are enumerated below: 

1.	 Total number of parameters: 44,611,648
2.	 Total trainable parameters: 2,216,832
3.	 Total non-trainable parameters: 42,394,816

(1)y = F(x,Wi)+ x

Table 1  The summary Of ResNet50 layered architecture. Architecture

Block Units (n) Operators (F) Resolutions ( H ×W) Channels

Block A 1 Conv, ReLu, MaxPool, BatchNorm 112× 112 64

Block B 15 Conv, ReLu, BatchNorm 56× 56, 28× 28, 14× 14, 7× 7 256, . . . , 2048

Block C 10 Conv, BatchNorm 56× 56, 28× 28, 14× 14, 7× 7 64, 128, ..., 2048

Block D 12 Conv, Relu, BatchNorm, Adaptive‑
MaxPool, AdaptAvgPool

7× 7 2048

Block E 1 Linear, Relu, BatchNorm 7× 7 512

Block F 1 Linear 7× 7 10
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VGG16

VGG architecture [33] improves on the basic ConvNet architecture by steadily increas-
ing the depth of the network through the addition of convolutional layers. As a result, 
the model becomes significantly more accurate. The input images are passed through 
a stack of convolutional (convs) layers of various sizes. This is followed by non-linearity 
ReLu activation function, batch normalization unit and pooling units such as average 
pooling, maximum pooling, adaptive average pooling, and adaptive maximum pooling. 
The pooling layers are utilized to preserve the spatial resolution after the convolution 
process and are executed over a 2× 2 pixel window.VGG16 model is composed of a set 
of blocks as shown in Fig. 2. The basic ConvNet applies Eq. (2) for features extraction:

where Fi refers to the feature map of the current layer, Fi−1 refers to the feature map of 
the previous layer, W is the filter kernel, and bi is the bias added to the feature map of 
each layer. The rectified linear unit (ReLU) activation function is defined as:

where y is the resulting feature map.
The composition of the blocks is further described in the Table 2 where n is the num-

ber of blocks with the same composition, F are the operators and the resolutions which 
represent the sizes are denoted with H and W. The detailed layout diagram of VGG16 
architecture is further described in Fig. 2.

The composition of the parameters in this model are enumerated below: 

1.	 Total number of parameters: 11,117,632
2.	 Total trainable parameters: 532,480
3.	 Total non-trainable parameters: 10,585,152

EfficientNet

EfficientNet architecture [34] performs compound Scaling of ConvNets by scaling 
all three dimensions—depth (number of layers), width (number of channels) or image 

(2)Fi = ReLU(W × Fi−1 + bi)

U(y) = max(0, y) =

{

y if y ≥ 0

0 if y < 0

Fig. 1  The basic architectural diagram for Resnet50 model design
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resolution (image size)and still maintains a balance between the three dimensions of the 
network by scaling up ConvNets. Each block in EfficientNet comprises batch normali-
zation (BN), followed by a Swish activation function, pooling and Convolution layers. 
Deep features from the network are extracted and down-sampled using integrated pool-
ing units. The architecture is composed of six main blocks.

The composition of the blocks is further described in the Table 3 where n is the num-
ber of blocks with the same composition, F are the operators and the resolutions which 
represent the sizes are denoted with H and W. These are further described in Fig.  3 
showing the detailed layout diagram of the EfficientNet architecture. The composition of 
the parameters in this model are enumerated below: 

1.	 Total number of parameters: 5,329,532
2.	 Total trainable parameters: 1,364,000
3.	 Total non-trainable parameters: 3,965,532

Inceptionv3

The inception model utilizes multiple Inception layers to achieve a reliable classifica-
tion performance. Inception Modules allow for more efficient computation and deeper 
networks through a dimensionality reduction with stacked 1 ×  1 convolutions [35]. The 
Inception-v3 model is designed for multiscale approach, as it increases both the width and 
depth of the network. This ensures that the vanishing gradient problems is minimized while 
also creating deeper architectures for efficient classification of the remote sensing satellite 

Table 2  The summary Of VGG16 layered architecture. Architecture

Block Units (n) Operators (F) Resolutions ( H ×W) Channels (C)

Block A 2 Conv, ReLu, MaxPool 224× 224 64

Block B 112 Conv, ReLu, BatchNorm 112× 112 128

Block C 1 Conv, ReLu, BatchNorm, AvgPool 56 × 56 256

Block D 1 Conv, ReLu, BatchNorm, AvgPool 56 × 56 256

Block E 1 Conv, ReLu, AvgPool, AdaptiveAvg‑
Pool, AdaptiveMaxpool

28 × 28 512

Block F 1 Linear, Relu, BatchNorm 28 × 28 512

Fig. 2  The basic architectural diagram for VGG16 model design
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images. The deep features from the network are extracted and down-sampled using the 
integrated pooling system. Figure 4 shows a basic architecture diagram of Inception-v3.

The composition of the parameters in this model are enumerated below: 

1.	 Total number of parameters: 23,897,056
2.	 Total trainable parameters: 2,145,920
3.	 Total non-trainable parameters: 21,751,136

Table 3  The summary of EfficientNet layered architecture. Architecture

Block Units (n) Operators (F) Resolutions(H × W) Channels

Block A 12 Conv, BatchNorm, Swish, AdaptiveAvg‑
Pool

112 × 112, 56 × 56, 28 × 28, 14 × 14, 
7 × 7

32,96,144,

Block B 4 Conv, BatchNorm, Swish, AdaptiveAvg‑
Pool

112 × 112, 56 × 56, 28 × 28, 14 × 14, 
7 × 7

96,144,240

Block C 4 Conv, BatchNorm, Swish 112 × 112, 56 × 56, 28 × 28, 14 × 14, 
7 × 7

96,144,240

Block D 16 Conv, Swish 1 × 1 8,4,6

Block E 16 Conv, Sigmoid 1 × 1 32,96,144

Block F 16 Conv, BatchNorm 112 × 112, 56 × 56, 28 × 28, 14 × 14, 
7 × 7

24,40,80

Block G 1 Linear, Relu, BatchNorm 7 × 7 512

Fig. 3  The basic architectural diagram for EfficientNet model design

Fig. 4  The basic architectural diagram for InceptionV3 model design
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DenseNet

DenseNets, as proposed in [36], aim to leverage feature reuse in the network to obtain 
compact and highly parameter efficient models that are easy to train. The network 
consists of a series of dense blocks, and to enhance computational efficiency within 
each block, a 1× 1 convolution layer is introduced before every 3× 3 convolution 
layer. This reduces the number of input feature maps, which are typically more than 
the output feature maps.

The process of concatenation and the dense blocks are described by the following 
equation:

where x0 . . . xn−1 refers to the concatenation of input feature maps from the convolu-
tional operators Cn . The composition of the blocks is further described in the Table 4 
where n is the number of blocks with the same composition, F are the operators and 
the resolutions which represent the sizes are denoted with H and W. These are further 
described in Fig. 5 showing the detailed layout diagram of the DenseNet121 architecture.

The composition of the parameters in this model are enumerated below: 

1.	 Total number of parameters: 8,012,672
2.	 Total trainable parameters: 1,142,464
3.	 Total non-trainable parameters: 6,870,208

(3)y = Cn([x0, x1, . . . , xn−1])

Table 4  Basic composition of the functional operators in each block that constitute the 
DenseNet121 Architecture

Block Units (n) Operators (F) Resolutions (H × W) Channels

Block A 2 Conv, ReLu, MaxPool, BatchNorm 112 × 112 64

Block B 112 Conv, ReLu, BatchNorm 56 × 56, 28 × 28,14 × 14, 7 × 7 128,32

Block C 1 Conv, ReLu, BatchNorm 56 × 56 32

Block D 1 Conv, Relu, MaxPool, BatchNorm, AvgPool 56 × 56 128

Block E 2 Conv, AvgPool, BatchNorm, Relu 28 × 28 256

Block F 1 Conv, BatchNorm, AdaptiveMaxPool, Linear, 
Relu, BatchNorm

7 × 7 –

Block G 1 Linear, Relu, BatchNorm 7 × 7 512

Fig. 5  The basic architectural diagram for DenseNet121 model design
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Vision Transformer‑based architecture

Vision transformers employ multi-head attention mechanism, which provides both 
local and global context for effective extraction of multi-scale, multi-resolution and 
high-level spatial features. The dense feature maps generated are then up-sampled and 
concatenated using the global average pooling system. The method leverages on both 
local and global attention, along with global average pooling, for efficient learning and 
extraction of the complex features in remote sensing satellite images. The entire sys-
tem is composed of processes such as flattening, tokenization, position embedding, 
and classification as shown in Fig. 6. Specifically, the input image is divided into fixed-
size patches, flattened and linearly embedded, added to position embedding, and sent 
into the Transformer encoder.

The composition of the parameters in this model are enumerated below: 

1.	 Total number of parameters: 4,166,151
2.	 Total trainable parameters: 4,166,151
3.	 Total non-trainable parameters: 0

Fig. 6  The basic layout diagram for Vision Transformer design
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Experiments and results
In this section, we conducted a series of experiments to assess the performance of the 
models. The results of the evaluations are presented and elaborated below, and are com-
pared with other similar approaches.

Datasets

EuroSAT

The EuroSAT benchmarking datasets [37] utilized in this study consist of 27,000 labeled 
images across ten classes. Each class comprises 2,000–3,000 images, with a size of 
224 × 224 pixels. It contains classes, including annual crops, forest, herbaceous vegeta-
tion, highway, industrial, pasture, permanent crops, residential, river, and sea lakes. Fig-
ure 7 shows some sample images from the dataset.

UCMerced‑LandUse

The UC Merced Land-Use dataset [38] comprises 2100 aerial scene satellite images, cat-
egorized into 21 land use scene classes, with each class containing 100 images of dimen-
sions 256 × 256 pixels.

NWPU‑RESISC45

The NWPU-RESISC45 dataset [39] consists of 31,500 remote sensing satellite images 
categorized into 45 scene classes. Each class comprises 700 images of dimensions 
256 × 256 pixels.

Performance metrics

Typically, the performance of deep learning models for image classification is assessed 
using standard metrics such as Accuracy, Recall, Precision, and F1-score. These metrics 
are defined as follows:

Accuracy measures the proportion of correct predictions out of the total number of 
cases examined. It is calculated using the equation:

Fig. 7  Sample images from EuroSAT dataset
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F1-score is the weighted average of Precision and Recall, providing a better assessment of 
incorrectly classified cases. It is defined as:

Recall measures the proportion of truly positive cases out of all actual positive cases. It is 
also known as sensitivity and is calculated using the equation:

Precision measures the proportion of true positive cases out of all predicted positive 
cases. It is calculated using the equation:

Confusion Matrix provides a detailed analysis of the results by reporting the number of 
false positives, false negatives, true positives, and true negatives. It shows the combina-
tions of predicted and true classes for a test dataset, using variables such as FP (false 
positive), FN (false negative), TP (true positive), and TN (true negative).

Results and discussion

In this study, we conducted several experiments to assess the performance of five 
CNN-based deep learning frameworks and the vision transformer, using these stand-
ard metrics on three publicly available datasets: EuroSAT, UCMerced-LandUse, and 
NWPU-RESISC45. The results of these experiments are presented and discussed in 
detail in the following sections.

Models performance on EuroSAT dataset

The results from the evaluation of all the models on EuroSAT dataset as represented 
in Table  5, Figs.  8,  9 and  10 clearly show detailed comparison of the performance of 
the model. By examining the result as represented in Table 5, using classification met-
rics such as accuracy, recall, precision and F1-score, two of the CNN based architec-
tures; DenseNet121 and ResNet101 perform excellently with more 90% score in all the 
evaluation metrics. The vision transformer also performs at par with these two models. 

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)F1− score = 2×
Precision× Recall

Precision+ Recall
=

TP

TP + 1/2(FP + FN )

(6)Recall =
TP

TP + FN

(7)Precision =
TP

TP + FP

Table 5  Performance analysis ( % ) and comparison of the deep learning methods on EuroSAT 
Dataset

Methods Accuracy Precision Recall F1Score

DenseNet121 98 98 98 98

ResNet101 98 98 98 98

InceptionV3 75 75 75 75

EfficientNet 65 66 65 65

VGG16 79 79 79 79
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However, three other CNN based architectures; InceptionV3, EfficientNet, VGG16 only 
produce average performance. These three models seem to require larger training data-
set to improve their performance. This can also be inferred from the loss curves in Fig. 8. 
The loss curves for DenseNet121, ResNet101 and vision transformer show that these 
models achieve very low score of less than 5% and also display stable loss throughout the 
training process.

Fig. 8  The figure shows the training loss curve diagrams of deep learning models on EuroSAT dataset: (i) 
represents the training loss curve for DenseNet121 model; (ii) represents the training loss curve for ResNet101 
model; (iii) represents the training loss curve for InceptionV3 model; (iv) represents the training loss curve for 
VGG16 model; (v) represents the training loss curve for EfficientNetV1 model; (vi) represents the training loss 
curve for Vision Transformer

Fig. 9  The figure shows the confusion matrix diagrams of deep learning models on EuroSAT dataset: (i) 
represents the confusion matrix for DenseNet121 model; (ii) represents the confusion matrix for ResNet101 
model; (iii) represents the confusion matrix for InceptionV3 model; (iv) represents the confusion matrix for 
VGG16 model; (v) represents the confusion matrix for EfficientNetV1 model; (vi) represents the confusion 
matrix for Vision Transformer
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Figures  9 and  10 display the classification output performance of the model when 
tested on test samples. The confusion matrixes in Fig. 9 for DenseNet121 and ResNet101 
show that most of the classes are correctly classified while misclassification rates are 
higher in InceptionV3, EfficientNet, and VGG16. The vision transformer also performs 
at par with DenseNet121 and ResNet101 in this case. The results from the confusion 
matrixes also collaborates the results as discussed earlier. This is also seen from the clas-
sification output from Fig.  10. DenseNet121 and ResNet50 models predict and detect 
the 12 test sample images correctly without missing anyone.

Fig. 10  The figure shows testing sample classification output diagrams of deep learning models on EuroSAT 
dataset: (i) represents the Classification output for DenseNet121 model; (ii) represents the Classification 
output for ResNet101 model; (iii) represents the Classification output for InceptionV3 model; (iv) represents 
the Classification output for VGG16 model; (v) represents the Classification output for EfficientNetV1 model; 
(vi) represents the Classification output for Vision Transformer
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Models performance comparison on UCMerced‑LandUse dataset

Table 6, Figs. 11, 12, and 13 present the evaluation results of DenseNet121, ResNet101, 
InceptionV3, and VGG16 models on the UCMerced dataset. The results, analyzed 
using classification metrics such as accuracy, recall, precision, and F1-score, reveal that 
DenseNet121 and ResNet101, both CNN-based architectures, perform exceptionally 
well on UCMerced dataset, achieving scores of more than 90% in all evaluation metrics. 
The performance of InceptionV3, and VGG16 has also improved on UCMerced dataset 
due to the size of the training dataset. This inference is supported by the loss curves in 
Fig. 11, which depict that DenseNet121, and ResNet101, achieve lower scores of less than 
2%. Figure 12 and Fig. 13 demonstrate the classification output performance of the mod-
els when tested on test samples. The confusion matrixes in Figure 12 for DenseNet121 
and ResNet101 demonstrate that most of the classes are correctly classified, with higher 
misclassification rates observed in InceptionV3 and VGG16. These results are fur-
ther supported by the classification output shown in Fig. 13, where DenseNet121 and 
ResNet101 accurately predict and detect all 12 test sample images, without missing any.

Models performance comparison on NWPU‑RESISC45 dataset

Table  7, Figs.  14,  15, and  16 present the evaluation results of various models on the 
NWPU-RESISC45 dataset, providing a detailed performance comparison. The results, 
analyzed using classification metrics such as accuracy, recall, precision, and F1-score, 
reveal that DenseNet121 and ResNet101, both CNN-based architectures, perform 

Fig. 11  The figure shows the training loss curve diagrams of deep learning models on UCMerced-LandUse 
dataset: (i) represents the training loss curve for DenseNet121 model; (ii) represents the training loss curve for 
ResNet101 model; (iii) represents the training loss curve for InceptionV3 model; (iv) represents the training 
loss curve for VGG16 model



Page 18 of 24Adegun et al. Journal of Big Data           (2023) 10:93 

exceptionally well, achieving scores of more than 90% in all evaluation metrics. However, 
InceptionV3 and VGG16, exhibit only average performance, suggesting that they may 
require larger training datasets to improve their results. This inference is supported by 
the loss curves in Fig. 14, which depict that DenseNet121, and ResNet101 achieve low 
scores of less than 2% and exhibit stable loss during the training process, indicating that 
they do not over-fit and can generalize well. Figures 15 and 16 demonstrate the classi-
fication output performance of the models when tested on test samples. The confusion 
matrixes in Fig. 15 for DenseNet121 and ResNet101 demonstrate that most of the classes 
are correctly classified, with higher misclassification rates observed in InceptionV3, and 
VGG16. These results align with those discussed earlier and are further supported by the 
classification output shown in Fig.  16, where DenseNet121 and ResNet101 accurately 
predict and detect all 12 test sample images, without missing any.

Table 6  Performance analysis ( % ) and comparison of the deep learning methods on UCMerced-
LandUse dataset

Methods Accuracy Precision Recall F1Score

DenseNet121 98 98 98 98

ResNet101 98 98 98 98

InceptionV3 74 74 73 72

VGG16 74 74 74 73

Fig. 12  The figure shows the confusion matrix diagrams of deep learning models on UCMerced-LandUse 
dataset: (i) represents the confusion matrix for DenseNet121 model; (ii) represents the confusion matrix for 
ResNet101 model; (iii) represents the confusion matrix for InceptionV3 model; (iv) represents the confusion 
matrix for VGG16 model



Page 19 of 24Adegun et al. Journal of Big Data           (2023) 10:93 	

Summary
Important factors identified from the research

In choosing the best convolutional neural network (CNN) for remote sensing images 
classification, some factors have been identified from the experiments carried out. These 
include size of dataset, complexity of model complexity and availability of computational 
resources. These factors have varying effects on the performance of all the models evalu-
ated on the three remote sensing dataset used for experiments: 1. Size of the dataset: To 
achieve improved performance of the models, larger datasets are required which in turn 
require deeper and more complex models to capture the variety of features. When the 
dataset is small, complex model with deeper networks tend to experience over-fitting. 2. 
Model Complexity: It has been established in this research that a deeper CNN with more 
convolutional layers such as DenseNet121 and ResNet101 achieve better performance 
than the shallower CNN. This accounts for the good performance of DenseNet121 and 
ResNet101. Datasets with complex features require a deeper CNN with more convolu-
tional layers for effective analysis. 3. Computational resources: Deeper and more com-
plex models require more computational resources for training and inference. Therefore, 

Fig. 13  The figure shows testing sample classification output diagrams of deep learning models on 
UCMerced-LandUse dataset: (i) represents the Classification output for DenseNet121 model; (ii) represents 
the Classification output for ResNet101 model; (iii) represents the Classification output for InceptionV3 model; 
(iv) represents the Classification output for VGG16 model
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the choice of CNN should also consider the available computational resources, such as 
the CPU, GPU, and memory. In this research GPU systems have been employed.

It has been established in this research that pre-trained deeper CNN models with 
more convolutional layers such as DenseNet121 and ResNet101 achieve better per-
formance in the analysis of remote sensing images on the three benchmark datasets 
examined in this research. The vision transformer also performs at the same level 
with them but require more computational resources. In the future, more works will 
be done to establish the appropriate database size and the complexity level of models 
required for efficient analysis of remote sensing images. We propose the combina-
tion of attention mechanisms based models such as vision transformer with CNN 
based deep learning models. Larger datasets require deeper and more complex 
models to capture the variety of features. Consideration should also be put on the 
complexity of the dataset as different remote sensing classes have varying levels of 
complexity. A class with many complex features requires a deeper CNN with more 
convolutional layers for efficient classification.

Table 7  Performance analysis ( % ) and comparison of the deep learning methods on NWPU-
RESISC45 Dataset

 Methods Accuracy Precision Recall F1Score

DenseNet121 98 98 98 98

ResNet101 98 98 98 98

InceptionV3 68 71 70 70

VGG16 70 71 70 69

Fig. 14  The figure shows the training loss curve diagrams of deep learning models on NWPU-RESISC45 
dataset: (i) represents the training loss curve for DenseNet121 model; (ii) represents the training loss curve for 
ResNet101 model; (iii) represents the training loss curve for InceptionV3 model; (iv) represents the training 
loss curve for VGG16 model
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Evaluation of visual results on some important challenges for remote sensing image 

classification

Challenging complex features in remote sensing images include spectral signatures, tex-
ture, shape, spatial relationships and temporal changes. These features affect the visual 
results of the models when evaluated. In this research, InceptionV3 and VGG16 models 
are unable to classify some images correctly due to their shape and texture that look sim-
ilar. For example, these models misclassified sealake as Annual crop, river as forest and 
forest as pasture due to similar textures when evaluated on EuroSAT dataset as shown 
in Fig. 10, They also misclassified intersection as freeway, freeway as river, buildings as 
overpass and golfcourse as sparse residential due to shapes and spatial relationships on 
UCMerced-LandUse dataset as shown in Fig. 13.

Models sensitivity towards outliers

The sensitivity of a remote sensing image classification algorithm towards outliers can 
significantly affect its accuracy. Outliers are data points that deviate significantly from 

Fig. 15  The figure shows the confusion matrix diagrams of deep learning models on NWPU-RESISC45 
dataset: (i) represents the confusion matrix for DenseNet121 model; (ii) represents the confusion matrix for 
ResNet101 model; (iii) represents the confusion matrix for InceptionV3 model; (iv) represents the confusion 
matrix for VGG16 model
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the majority of the data and can arise due to various reasons such as noise, meas-
urement errors, or physical phenomena. Our analysis shows that Densenet121 and 
Resnet101 models are moderately sensitive to outliers. The overall accuracy of the 
classifiers on the dataset is 98%, while the overall accuracy on the outlier-contami-
nated dataset drops to 95%. This indicates that the presence of outliers in the dataset 
can lead to a reduction in classification accuracy. Furthermore, most of the sample 
images tested using Desnet121 and Resnet101 models are correctly classified. For the 
VGG16 and InceptionV3, the models exhibit greater sensitivity to outliers. The over-
all accuracy of the classifiers on the dataset is 68%, while the overall accuracy on the 
outlier-contaminated dataset drops to 60%. Some of the sample images tested (3 out 
of 10) using these models are incorrectly classified.

Fig. 16  The figure shows testing sample classification output diagrams of deep learning models on 
NWPU-RESISC45 dataset: (i) represents the Classification output for DenseNet121 model; (ii) represents the 
Classification output for ResNet101 model; (iii) represents the Classification output for InceptionV3 model; (iv) 
represents the Classification output for VGG16 model
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Conclusion
In this research, we have performed experimental analysis and comparison of some 
deep learning based architectures on three publicly available remote sensing satellite 
images, EuroSAT, UCMerced-LandUse and NWPU-RESISC45 datasets. The research 
shows that the models generally perform well with better optimization on high res-
olution remote sensing satellite. Experiments show that models that are based on 
deeper CNN with more convolutional layers are able to efficiently overcome the chal-
lenges such as heterogeneous appearance of remote sensing satellite images.
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