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Abstract 

The production of land cover maps is an everyday use of image classification applica‑
tions on remote sensing. However, managing Earth observation satellite data for a 
large region of interest is challenging in the task of creating land cover maps. Since sat‑
ellite imagery is getting more precise and extensive, Big Data techniques are becoming 
essential to handle the rising quantity of data. Furthermore, given the complexity of 
managing and analysing the data, defining a methodology that reduces the complex‑
ity of the process into different smaller steps is vital to data processing. This paper 
presents a Big Data methodology for creating land cover maps employing artificial 
intelligence algorithms. Machine Learning algorithms are contemplated for remote 
sensing and geodata classification, supported by explainable artificial intelligence. 
Furthermore, the process considers aspects related to downloading data from differ‑
ent satellites, Copernicus and ASTER, executing the pre‑processing and processing of 
the data in a distributed environment, and depicting the visualisation of the result. The 
methodology is validated in a test case for er map of the Mediterranean Basin.

Keywords: Big Data, Land cover, Workflow, Explainable AI, Remote sensing, 
Multispectral, Machine learning

Introduction
Nowadays, Earth observation based on remote sensing is becoming more significant 
as it provides a solid technological foundation for creating cutting-edge applications 
across various fields such as climate change [1], precision agriculture [2], smart urban-
ism [3], soil degradation, and land cover changes [4]. Particularly, land degradation risk 
has grown significantly during the past few decades. The natural ecosystem and the 
socio-economic system are interconnected systems affected by land degradation [5, 6]. 
Monitoring land use fulfils a vital role in achieving several worldwide strategic objec-
tives such as saving biodiversity [7], reducing carbon emissions and global warming [8, 
9], urban planning [10] and agriculture [11]. In this sense, LifeWatch ERIC1 is a Euro-
pean Research Infrastructure Consortium born in 2017 that offers e-Science research 
capabilities to researchers looking into the functions and services of biodiversity and 
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ecosystems to help society address major planetary concerns. This paper is developed 
through the environmental and biodiversity climate change lab (EnBiC2-Lab2) project 
(in the LifeWatch ERIC infrastructure ecosystem).

A meaningful way to describe the Earth’s surface is through its land cover (LC). Vari-
ous local, national, and international natural resources’ management decisions require 
spatially detailed land cover data. The functional link between topography, climate, 
and soil is influenced by land cover, which also provides biophysical insights into the 
environment and change-causing factors  [12]. It is hardly a stretch to suggest that the 
entire planet has gone digital; thus, LC mapping has become a Big Data issue  [13]. 
Therefore, the amount of data necessary to manage is an ambitious task due to the sig-
nificant growth of its volume [14]. The extensive data generated by remote sensing have 
several distinct and tangible properties, such as being multi-source, multi-scale, high-
dimensional, dynamic-state, and non-linear  [15]. Besides, satellite remote sensing has 
long been regarded as the optimal technique and data source for large-area land cover 
classifications [16].

Moreover, land cover on a large scale is challenging due to spectral heterogeneity and 
complexity of the terrain  [17]. A suitable method for mapping vegetation on a global, 
regional, or local scale, periodically and repeatedly, is provided by the European Coper-
nicus programme,3 served by the Sentinel satellite missions.4 Since 2013 Sentinel-25 con-
tinuously collects optical imagery and delivers, every 2 to 5 days, high spatial resolution 
(10–60 m) multispectral images for global monitoring data.

Other National Space Agencies, such as NASA (U.S. National Aerospace Agency), also 
contribute with missions and data useful for LC mapping. The USGS (U.S. Geological 
Survey) develops the Land Change Monitoring, Assessment, and Projection (LCMAP) 
program6 focus on LC monitoring using Landsat mission data. In addition, Since 1999, 
NASA and JAXA (Japanese Aerospace Exploration Agency) launched the Advanced Spa-
ceborne Thermal Emission and Reflection Radiometer (ASTER) satellite,7 which provides 
multispectral satellite images with high spatial and spectral resolutions (15–90 ms) [18]. 
The satellite is loaded with two cameras with different angles of observation (nadir and 
23 degrees), which allows the stereoscopic reconstruction of the Digital Surface Model 
of the Earth at a nominal pixel resolution of 25 ms.

Besides, private initiatives such as the Google Cloud Storage platform8 allow the down-
load of the data from Sentinel-2 [19]. All of these platforms have free and open services 
available to their users [20].

In the context of monitoring, mapping, and modelling activities, the satellites men-
tioned above are used for large-area, multiple-image-based, multiple-sensor land cover 
mapping [21].

2 https:// enbic 2lab. uma. es/.
3 https:// www. coper nicus. eu.
4 https:// senti nels. coper nicus. eu/ web/ senti nel/ home.
5 https:// senti nels. coper nicus. eu/ web/ senti nel/ missi ons/ senti nel-2.
6 (https:// www. usgs. gov/ speci al- topics/ lcmap).
7 https:// aster web. jpl. nasa. gov/ gdem. asp.
8 https:// cloud. google. com/ stora ge/ docs/ public- datas ets.
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Data collection and pre-processing, map legend generation, classification strategy, 
stratification, the inclusion of auxiliary data, and accuracy evaluation have all been 
highlighted as standard methodological processes, usually in the form of a workflow 
above all in the context of Big Data [22, 23]. Generally, methods to classify land cover 
over an enormous region must be reliable and reproducible. This situation poses new 
challenges beyond those encountered in large-area image classifications  [24]. The 
extensive amount of unprocessed remote sensing data is accompanied by the “four 
Vs”, or volume, variety, velocity, and veracity, which are referred to as the “four prob-
lems of Big Data” [25]. Specialised tools and techniques are needed to efficiently mine 
and extract useful information from such data as well as control its volume [26].

To find a helpful technique for mapping LC patterns, the remote sensing commu-
nity has attempted to approach the issue of LC classification from various algorithmic 
technique angles  [27]. Machine Learning (ML) algorithms are widely used for land 
cover classification using remote sensing data  [28–31]. In fact, Random Forest algo-
rithm [32] has been proved to perform well for LC mapping due to its capacity suc-
cessfully handle high data dimensionality and multicollinearity, being both fast and 
insensitive to overfitting [33].

A particular ML technique known as eXplainable artificial intelligence (XAI), which 
allow human users to comprehend and trust the results and outputs of machine learn-
ing algorithms, has attracted increasing research interest [34]. In general, XAI lacks a 
widely accepted definition. Still, it has been shown that it explains essential elements 
like transparency, justification, and informativeness that are essential, particularly for 
social or therapeutic applications. ML models frequently turn into black boxes, mak-
ing it difficult to deduce broad guidelines for input attributes and output scores [35]. 
According to this viewpoint, every method that aims to create an understandable 
model may come inside the XAI domain. XAI is used to interpret the RF method and 
analyze the impact of different LC patterns [36].

The challenge in this work is describing a methodology to facilitate land cover clas-
sification in large areas such as the Mediterranean Basin. Furthermore, a workflow is 
developed for implementing the methodology. The Mediterranean Basin is covered by 
more than 450 Sentinel-2 tiles and around 1200 ASTER tiles. Moreover, three seasons 
of Sentinel-2 data are used, together with several derived products from Sentinel-2 
and ASTER, which multiplies the amount of computation needed to process them. 
Parts of the workflow have been distributed using a tool for paralleling algorithms, 
Dask  [37], to solve this problem. The main contributions of this work are described 
next:

• Development of an Open Source workflow to support the analysis of classifying land 
cover in the context of Big Data.

• A versatile tool for generating maps, which can deliver different cartography depend-
ing on the input data (images and labelled data). Therefore, this work’s results are 
transferable to other areas, years and thematic maps. The minimum attributes 
required for each point are latitude, longitude, and label.
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• A controlled Big Data storage and management and metadata protocols. A distrib-
uted information S3-compatible object storage like MinIO  9 is used. In the case of 
metadata, they are stored in a NoSQL database, like MongoDB ,10 seeking flexibility 
and velocity.

The rest of the paper is structured as follows. "Related work" section presents the most 
relevant related work to our proposal. "Materials and methods" section details the pro-
posal workflow step by step. "Results and discussion" section presents the application of 
our proposal to the case study. Conclusions and future work are presented in "Conclu-
sions" section.

Related work
At the European level, the CORINE (CLC) program is a standardised data collection and 
LC mapping to support environmental policy development since 1990. The development 
of the CLC maps is in the hands of each nation and region in the European Economic 
Area, following Copernicus standards on photo interpretation, using High Resolution 
(HR) images such as aerial and satellite images, and ground truth data for labelling. 
Since the last CLC version (CLC+,11 2018), semi-automatic approaches have been used 
in a few countries, utilising national in-situ data, Sentinel-2 image processing, and geo-
graphic information system integration (GIS). The limitations of the CORINE (at least 
the older versions) are the large amount of human power and time required, besides 
the bias on human interpretation of polygon size and labelling, which produces differ-
ences in the LC maps among regions and nations. By automating the LC map produc-
tion, using a single source of data (Sentinel-2), it is expected that the CLC+ will be a 
homogeneous product across Europe by reducing the processing time and human power 
required.

In this line of thinking, at the global level, the Copernicus Global Land Service sys-
tematically monitors global bio-geophysical characteristics by the yearly production of 
the Copernicus Global Land Cover Map (GLC)) since 2015. More than 20 institutes are 
involved in processing low-to medium-resolution optical and radar data, data validation, 
data supply, and product quality control of the GLC [4, 38]. GLC is created through a 
processing workflow, which is not sensor-specific and can be applied to any satellite data. 
Initially, the GLC product was developed using PROBA-V sensor data [39], although the 
workflow has also been tested on Sentinel-2 and Landsat data.12 However, the accuracy 
of the LC maps based on automatic techniques strongly depends on the quality and 
quantity of ground-truth data, which is heterogeneous across the planet at the moment. 
A technical report by the European Environmental Agency [40] evaluated the accuracy 
of the GLC and other cartography between the European, North African and Middle 
East areas of the Mediterranean. The conclusion was that map accuracy (particularly 

10 https:// www. mongo db. com/.
11 https:// land. coper nicus. eu/ pan- europ ean/ clc- plus.
12 https:// land. coper nicus. eu/ global/ produ cts/ lc.

9 https:// min. io/.

https://www.mongodb.com/
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forest class accuracy) is low in non-European countries due to scarce ground-truth data 
on those regions.

Materials and methods
This section describes the methodology proposed to build a Land Cover map from sat-
ellite images utilising Machine Learning algorithms to train predictive models using a 
dataset composed of labelled coordinates, taking advantage of Big Data technologies to 
deal with the complexity of working with the data volume of satellite images for large 
areas.

Figure  1 shows a general view of the proposed methodology that has been con-
verted into a functional software workflow for the automatic land cover classification. 
This methodology is divided into different steps described in detail in the following 
subsections.

The first part of the workflow is composed of methods related to data collection, such 
as downloading raster data and collecting the labelled geolocated information ("Data 
collection" subsection). Then, raster data has to be harmonised and cleaned using pre-
processing data methods, such as removing clouds from the S2 images, denoising the 
ASTER DEM, generating S2 monthly composites, calculating spectral indices [41] and 
normalizing variables ("Data pre-processing" subsection). The third step aims at pre-
paring the data to be used in the ML algorithms. Thus, this step transforms the raster 
data in combination with the ground-truth point dataset into tabular datasets (a spectral 
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library) for training the ML algorithms ("Training data generation" subsection). The 
training (ground truth) dataset has to be as well pre-processed to adapt the raw dataset 
into the LC classes of the map and to balance the classes statistically, based on repre-
sentativeness and overfitting ("Training data management" subsection). Having a spec-
tral library (obtained from the intersection of the image data and the ground-truth data) 
prepared through the designed workflow, a ML model is ready to be trained and vali-
dated ("Model training and validation" subsection) and XAI is used to analyse the ML 
model ("Explainability and feature reduction" subsection). Finally, satellite images are 
classified using the trained model by iterating the model through all tiles ("Data predic-
tion" subsection).

Data collection

The first step in the data collection stage is to collect the labelled geolocated data for 
training the ML algorithms. The inputs required by the designed algorithms must be 
based on point coordinates. Thus, the data collected consists of a set of coordinates and 
a label for each one. This input may be provided as a KMZ or GeoJSON file. For the 
case of the Land Cover Map of the Mediterranean region, the training data consists of 
ground-truth data of the LC classes. The data comes from different sources, such as 
LC maps or National LC inventories of several countries, such as Lebanon, Spain13 and 
Tunisia [42]. Besides, it has been collected data from eleven other countries through the 
photo interpretation of high-resolution images from Google Earth in 2021. The data can 
be a wall-to-wall LC map in polygon shapefile format or tabular point data. As some-
times the ground-truth data are polygons, an algorithm called polylabel  [43] has been 
used for parsing polygons to points. The points computed by this method are the most 
distant internal coordinate from the polygon outline, which is always a coordinate con-
tained in the region. Another alternative would be the centroid, but it has not been con-
sidered as it may be located outside the polygon region (which can belong to another 
class).

The definitions of the different ground-truth data sources were harmonised to the 9 
main LC classes of Copernicus Global Land Cover [44] from 201914 (excluding snow & 
ice class).

Sentinel 2 L2A reflectance products were used as a basis to create the LC map. Sen-
tinel-2 products can be downloaded from the Copernicus API Hub15 and from Google 
Cloud Storage public Sentinel-2 dataset. Google Cloud Storage was found to be more 
stable than downloading from the Copernicus API. Sentinel-2 provides multispectral 
data in 13 bands covering the wavelength range between 440-2190 nm to a nominal pixel 
resolution of 10, 20 and 60 m every 3–5 days. Reflectance is known to be related to plant 
phenology  [45], which can be helpful for the discrimination of vegetation LC classes. 
Three months of 2021 were selected to represent the yearly plant cycle: March, June 
and November. Each month selected defines a year’s season. Winter was not considered 

13 https:// www. miteco. gob. es/ es/ carto grafia- y- sig/ ide/ desca rgas/ biodi versi dad/ mfe. aspx.
14 https:// lcvie wer. vito. be/ 2019.
15 https:// scihub. coper nicus. eu/ dhus.

https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/biodiversidad/mfe.aspx
https://lcviewer.vito.be/2019
https://scihub.copernicus.eu/dhus
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because the snow could cover large surfaces, and its high reflectance could be a problem 
for the analysis [46].

For all tiles in the working area, all non-cloudy products for the selected months are 
downloaded. As a general rule, the downloaded products do not contain more than 
20% of the cloud pixels, as reported in the metadata. Nevertheless, there is a possibility 
that not enough products will be available in some months (e.g. in continuous cloudy 
weather). In this case, they were downloaded from the nearest available date from April 
(spring), July (summer) and October (autumn) until at least two non-partial products 
were obtained for each season.

Additionally to the Sentinel products, the ASTER Digital Elevation Model (DEM), 
from the Japan Space Systems services,16 was also downloaded to obtain variables on 
altitude, slope and aspect of the ground, as they can also influence the distribution of 
LC classes on the terrain, especially natural vegetation [47]. ASTER DEM has a nominal 
pixel resolution of 25 ms. Since raster data are generally big files, some kind of object-
based storage is recommended since downloading them at runtime is not feasible. For 
our use case, we utilised MinIO, an open-source S3-compatible object storage [48, 49].

Due to several incomplete Sentinel-2 products (either covering only partial tiles or 
with a high percentage of cloudy-covered area), a quality map has been calculated. This 
map allows visually checking each tile’s product availability status; therefore, it checks 
that there is no lack of data because it may cause the land cover prediction to be incom-
plete. Figure 2 showcases an example of the quality of the data we could obtain for our 
use case. In addition, for each tile of the Mediterranean basin, a list of all the products 
downloaded with their cloud coverage percentage and no data percentage has been cal-
culated to check the quality and completeness of the results.

Data pre‑processing

This section describes the different pre-processing techniques applied to the raw data 
collected from Sentinel-2 and ASTER. These steps are executed only once for each 

Fig. 2 Visual representation of the quality of the input data for the Mediterranean basin use case. The colour 
of each polygon displayed represents the percentage of missing pixels in a Sentinel tile, marked as nodata. If 
the nodata pixels occupy more than 20% of the final image, the colour shown is red. Tiles with a missing data 
percentage between 5% and 20% are graded from green to red

16 https:// www. jspac esyst ems. or. jp/ ersdac/ GDEM/E.

https://www.jspacesystems.or.jp/ersdac/GDEM/E
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satellite data product. The results are stored for the rest of the steps in the S3-compatible 
object storage system, MinIO. Due to the high requirements on time, access to memory 
and computational efforts, it is recommendable to avoid performing these tasks during 
run-time.

Sentinel-2 composites A well-known problem in remote sensing is the corruption of 
individual products  [50], either by the existence of clouds and their shadows (in mul-
tispectral imagery) or by the possibility of obtaining a partially covered tile (due to the 
Sentinel-2 tiling grid system). These problems are usually solved by composing each 
band using different products captured on a similar date  [51]. In the proposed meth-
odology, the composited bands are created using the pixel-wise median employing 

Fig. 3 a, d, g True Colour images (TCI) of similar dates, b, e, h original cloud masks using Sentinel‑2 SCL 
cloud‑related pixels, c, f, i post‑processed cloud masks. j) is the composite of the three images using the 
original S‑2 cloud masks, and k is the composite using the dilated cloud masks. Both composites show in 
red the no‑data pixels, where data is not available in any of all original images. Marked with circles are some 
examples where the post‑processed masks improve the composite. Note that j is problematic to use to 
obtain validated data, as pixels near no‑data are probably corrupted. This problem is solved in k as corrupted 
pixels are not used for the arithmetic median. Also, the resulting composite k is much more precise than j, 
more noticeable when there are few products (2–3) available for making the composite
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between 2 and 5 low-cloud ( ≤ 20% ) products for each season. It is worth noting that the 
Sentinel-2 SCL (Scene Classification Layer) is used to create a cloud mask (even includ-
ing cirrus and cloud shadows) for each product. Thus, the median will only consider the 
cloud-free pixels.

The SCL has been improved to reduce the false negatives in the Sentinel-2 cloud mask, 
as it is prone to false positives in cloud surroundings (see Fig. 3). The algorithm post-
processes every cloud mask, expanding only the dense trunks (usual clouds) and not 
expanding isolated valid pixels (usually cloud false positives). It is based on a convolu-
tion operation using an average filter with a kernel size equivalent to 600× 600m2 (e.g., 
if expanding a cloud mask with a 60m spatial resolution, the kernel will have a (10, 10) 
shape). The result of the convolution per pixel is a number between 0 and 1, representing 
the probability of finding a cloud in the defined neighbour area. That number is mapped 
to true when it is more significant than 0.075, transforming cloud proximity from false 
negatives to true positives (isolated false positives will also disappear). Both variables 
were defined empirically until desired results were achieved. It is noteworthy that the 
convolution separability property has been employed to reduce computation complexity, 
having a low impact on execution time even with huge bands.

As the whole operation of making a composite product is time-consuming and com-
putationally expensive, the composites are stored in the data storage once they have 
been calculated. To allow reusing the composites during training and prediction stages 
or execution of new cases (with a different classification goal) if they share the same geo-
graphic area.

Spectral indices For the downloaded Sentinel-2 products, several Spectral Indices, 
which can reveal the relative abundance of plant greenness and moisture [41], has been 
computed for each product at the highest resolution available for the bands used. The 
final list of Spectral indices is described in Table 1.

ASTER-gdem ASTER DEM products have been denoised to reduce artefacts passing 
to later stages of the processing  [61]. The products have been denoised using the Sys-
tem for Automated Geoscientific Analyses (SAGA) [62], with a value of sigma 0.85 and 
60 iterations. The rest of the parameters are left to default. The sigma (or threshold on 
the original paper) values have been chosen following the guidelines described on [63], 
which suggest higher values for both parameters as the number of sharp edges increases. 

Table 1 The Land Cover classifier uses a list of spectral vegetation indices as input

All indices are calculated using Sentinel-2 bands. On the OSAVI index, the community accepted value for Y is 0.16

Index Formula References

Carotenoid Reflectance Index 1 (CRI1) B03

B02
 [52]

Enhanced Vegetation Index 2 (EVI2) 2.4 ∗
B08−B04

B08+B04+1.0
 [53]

Global Vegetation Moisture Index (GVMI) B08A−B11

B08A+B11
 [54]

Normalised Difference Water Index (MNDWI) B03−B11

B03+B11
 [55]

Normalised Difference Red‑Edge (NDRE) B09−B05

B09+B05
 [56]

Normalised Difference Vegetation Index (NDVI) B08−B04

B08+B04
 [57]

Normalised Difference Yellowness Index (NDYI) B03−B02

B03+B02
 [58]

Optimised Soil Adjusted Vegetation Index (OSAVI) (1+ Y) ∗ B08−B04

B08+B04+Y
 [59]

Normalised Difference Red/Green Redness Index (RI) B04−B03

B04+B03
 [60]
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The derived products’ slope (maximum angle of elevation between a point and its neigh-
bours) and aspect (orientation of slope) have been calculated with GRASS [64] version 
7.8 from the denoised products.

ASTER DEM images have to be aligned to the corresponding Sentinel-2 tile, which is 
done using a joint product with all the DEM tiles intersecting the Sentinel-2 one. After-
wards, this merged product is re-projected to the Sentinel-2 coordinate reference system 
and cropped to match the Sentinel-2 tile area. In the process, the ASTER DEM pixel size 
(25 ms) is also warped to the Sentinel-2 pixel resolution (10 ms). Among the different 
raster variables, there are different spatial resolutions (e.g., the DEM has a 30 m spatial 
resolution, S-2 B02 10  m and S-2 B09 60  ms). For harmonisation, all features are re-
projected to 10 ms of spatial resolution. This resolution is selected because it is the finer 
spatial resolution and the nominal resolution of most bands of the Sentinel-2 products.

It is widespread in ML to normalise every feature of the dataset to reduce the dispari-
ties in units among different variables, which could affect the ML model. Most spectral 
indexes are normalised by default from −1 to 1. The most used normalisation methods 
are min-max and Z-score  [65], which normalise each feature using the minimum and 
maximum values as limits, and global mean and standard deviation, respectively. How-
ever, these are designed for normalising datasets where all data can be loaded simultane-
ously. This is not feasible when dealing with several high-resolution rasters in terms of 
Random Access Memory (RAM). As commented above, data is split into tiles, which 
are normalised independently. Still, it is necessary to establish a normalisation range for 
every feature to preserve consistency across tiles.

The used vegetation indexes are already normalised, so the features to be normal-
ised are Sentinel-2 bands (B1 to B12, aerosol optical thickness (AOT) and scene aver-
age water vapour (WVP)), and ASTER-related rasters (aspect, slope, and DEM). Table 2 
shows the range of possible values and normalisation values for each feature. The nor-
malisation values have two values (x, y), meaning that x will be mapped to −1 and y to 
1. An example to help illustrate the selection of ranges per variable is the values used 
for the DEM; the value range is between 0 (sea level) and 8849 (highest recorded value). 
However, in our area of interest, there is no elevation value above 3000 ms, being the 
range 0–2000 the usual range of values.

Training data generation

This section focuses on describing how the data for the training stage is generated. This 
data combines the labelled data (ground truth data) and previously pre-processed satel-
lite images. This is a complex process, as several challenges have been faced related to 

Table 2 Possible values that each raster can contain, along with values predefined for normalisation

Those values have been considered typical values found in our study area

Raster name Value range Normalisation 
values

Sentinel‑2 bands (0‑65535) (0,7000)

Slope (0‑90) (0,70)

Aspect (0‑360) (0,360)

DEM (0‑8849) (0,2000)
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the computation requirements for the use case. Time optimisation is done to read more 
than 10,000 Sentinel-2 products covering the Mediterranean Basin.

The training process involves the generation of a spectral library by intersecting the 
input labelled dataset against the raster variables and writing the values into a table 
sorted by the coordinates of each location. All labelled points are grouped per Sentinel-2 
tile they fall into to make the process parallel; therefore, each tile is only read once. All 
points are converted to the Military Grid Reference System (MGRS) [66] with a precision 
level of 100 km to obtain the Grid Square ID used to reference Sentinel-2 product tiles.

Each Sentinel-2 raster is read as a matrix with geographical metadata associated. Thus, 
each matrix pixel is related to a geographical coordinate (and vice versa). This process is 
done employing Rasterio Python package [67], which provides several methods to work 
with raster data.

A mask, including the class annotations of each pixel, is created to process the points 
of the different LC classes. This way, the classes are separated afterwards, only reading 
the product to mask it once. In addition, to increase the data diversity for the training 
process, each class point is raised by a radius of one in all directions to all adjacent cells, 
leaving 9 samples for each point in the original database.

The resulting training data (spectral library) is organised in a dataframe where each 
column is a feature (ground truth sample) and each row corresponds to the coor-
dinates of a pixel in the target spatial resolution (10  ms in our use case) containing 
n_validated_pixels × 9 rows and 78 columns (raster variables), for each tile. Those col-
umns are composed of:

• Data from ASTER-related bands (DEM, slope, and aspect).
• The point coordinates (latitude and longitude) along with its label.
• 24 columns for each of the observed seasons (summer, autumn, and spring): the 

identifier of the composite used, 14 Sentinel-2 bands (B01-09, B11, B12, B8A, AOT, 
and WVP), and the 9 indexes shown in Table 1.

Training data management

This section covers the data operations that are made to the training dataset composed 
in "Training data generation" section, aiming to achieve a balanced and accurate training 
dataset to feed the model, reducing the confusion between classes:

Class balancing. It is essential to check the histogram of the labelled data, as class over- 
or under- representation can lead to a lousy classification. The number of samples per 
class must be related to their representative in reality. In our use case, as 9 neighbouring 
pixels are taken for each validated coordinate, the way of balancing an over-represented 
class is to drop some adjacent pixels from the dataset. This way, the class histogram can 
be balanced without losing data heterogeneity.

Data shuffle. In ML, it is usually necessary to shuffle the data, as it reduces variance 
and helps prevent the model from overfitting. Shuffling the dataset is crucial in the pro-
posed methodology as pixels are added nine by nine (central pixel and 8 neighbours). 
These pixels have the same label and share a similar spectral signature, causing overfit-
ting to the model if they are not shuffled.
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Merging classes. Sometimes, when two labels are very similar, the model may be una-
ble to separate them. In this case, those classes could be merged into a more general 
one, encapsulating both. In remote sensing, several ways exist to identify non-spectrally 
separable classes, such as plotting the class spectral signatures or computing the Jeffries-
Matusita [68] distance between them.

Model training and validation

Random forest and neural networks are the first ML models considered for our pro-
posal. On the one hand, relating to the multi-layer neural network, the best-perform-
ing architecture found is a 2-layer with 40 perceptrons each using a sigmoid activation 
function, achieving a tolerable accuracy in the test dataset. Yet results are not promising, 
especially in spectrally heterogeneous classes, such as agriculture or cities. On the other 
hand, the best-performing random forest is composed of 100 trees, achieving very high 
accuracy in the training set, clearly outperforming the best neural network found. The 
rest of the RF parameters, implemented in the Python library sklearn [69],17 were left as 
default. Both models are trained using the same data, which consists of 80% of the entire 
spectral library (from now on, training dataset). The other 20% of the dataset is used 
for validating the models’ performance (from now on, validation dataset). The splitting 
percentage depends on the quantity of data available and the number of labels to pre-
dict. Before splitting the dataset in training and validation, rows with nodata features are 
dropped. Models are then compared by a confusion matrix: Each pixel in the validation 
dataset is predicted by the trained model, obtaining a set of labels (predicted). Then, the 
classes are compared against their actual label, which was validated by an expert (true). 
The correct targets are summarised along the diagonal of the confusion matrix (over-
all accuracy), while errors are spread in off-diagonal cells. The errors are accounted per 
class as errors of omission (last row), and errors of commission (last column) [70].

This classification accuracy difference is due to the random forest being an ensemble 
of models and the neural network being a single one. The ensemble has the benefit of 
predicting spectrally heterogeneous classes. For example, the agriculture class contains 
validated spectral data from different cereals, vegetables, and fruits, each with a differ-
ent spectral signature. Each tree in the ensemble would specialise in one of those parts 
of the agriculture class in the training phase, facilitating its prediction in the final class. 
Only the random forest model is used based on the validation phase results.

Explainability and feature reduction

A tree explainer is used, from the Artificial Intelligence Explanaible method SHAP 
(SHapley Additive exPlanation) [71], to provide an insight on the feature importance for 
our model. Explainability techniques are applied to Land Cover classification to iden-
tify classes that are not being separated correctly by the model and to help improve the 
model by, for example, showing how the model arrived at a wrong prediction. Figure 4 
shows the results of the explainer in our use case. The essential features in the gen-
eral classification are represented on the Y-axis in descending order (top-bottom). The 

17 https:// scikit- learn. org/ stable/.

https://scikit-learn.org/stable/
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impact of each feature in the classification of each class is defined in the X-axis in abso-
lute value on a scale from 0 to the maximum contribution (0.1 in this case) as SHAP val-
ues. SHAP values are relative values that attribute to each band change in the expected 
model prediction when conditioning on that feature [72]. A higher SHAP value means 
this feature impacts the model output towards that class, while a lower value impacts the 
output towards a different class.

The explainability analysis can be helpful in case an improvement in time and resource 
usage is needed to make a feature reduction. For the case of the study, it can be beneficial 
since a large part of the execution time is given by loading rasters to memory, which can 
be reduced proportionally to the amount of discarded features. The memory needed to 
train the model or classify the terrain would also be reduced.

Recursive feature elimination (RFE) has been used in this project to remove the 
least relevant features identified in the explainability analysis. RFE is a feature selec-
tion method that trains a model and drops the feature that contributes the least to the 
model until the specified number of features is reached. The model is elastic net [73], a 
state-of-the-art regularised regression method. The RFE has been used to select the 30 
most relevant features that have been used to train and test the random forest algorithm. 

Fig. 4 Feature importance summary of the model, the Y axis list the most important bands in descending 
order (each class importance corresponds to a different colour) while the X axis shows the mean of the 
absolute value of SHAP values
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Results are not as precise as using all the available features. Still, the time and resources 
are noticeably reduced in the same proportion as the number of bands used while keep-
ing a similar performance. Furthermore, the number of features chosen can be adapted 
to the resources available.

Data prediction

Data prediction is the final step of a trained ML model. The machine applies the model 
to each raster tile stack pixel-by-pixel in this step. The prediction results in a matrix 
of cells of unsigned integers (0–255), which describe the LC classes numerically. This 
matrix will have the exact dimensions as the Sentinel-2 tile with 10 m spatial resolution 
(120 MB size each).

Results and discussion
Model validation, testing and comparison with Copernicus GLC

Once the whole area of interest has been predicted using the obtained model, it has to 
be checked if it is making correct predictions. It is usual to assess a ML model using two 
different datasets, the validation set and the test set.

Fig. 5 Confusion matrix obtains using a Random Forest model in our use case (LC of the Mediterranean 
Basin). Overall map accuracy is near 96%



Page 15 of 22Burgueño et al. Journal of Big Data           (2023) 10:91  

As explained in "Model training and validation" section, the model is validated 
using the validation dataset, which is used to overview the correctness of the pro-
posed model in early phases and detect coarse problems in the design of the model 
and selection of variables (Fig. 5). The validation dataset is a 20% of records from the 
training dataset, for which it is expected certain correlation and an optimistic accu-
racy results, if the model is correct. The test dataset is predominately used to evalu-
ate the final product and is an independent dataset from the training dataset. Indeed, 
good results in the validation set (training model) do not guarantee good results with 
production data (entire study area). In our case, the training and validation datasets 
belong to only three countries (Lebanon, Spain and Tunisia), portraying the most rep-
resentative landscapes of the Mediterranean basin; while the testing dataset was not 
used for training and belongs to 14 countries of the basin (including Lebanon, Spain 
and Tunisia).

The results of the validation dataset showed that the overall accuracy of the map is 
96.2%, with producers’ and users’ accuracy per class always above the 90% (errors of 
omission and commission lower than 10% for all classes) (Fig. 5). These results con-
firm the methodological workflow is successful in the task of generating a LC map for 
a large area, such as the Mediterranean basin, by processing Big Data from satellite 
images and large ground-truth databases.

A realistic evaluation of the map is done by generating a testing dataset. The test-
ing dataset should be composed of data validated by experts unaffiliated with the 
project. Following this criterion, nearly 8000 random points inside our working area 
were inspected to create a test dataset. As expected, the results of predicting the test 
dataset are not as good as those of the validation dataset, obtaining an overall accu-
racy of 72%. However, some classes do classify well. For example, the “closedForest” 
and “builtUp” classes have a 95% and 91% hit rate, respectively. The fact that there is 
a significant difference in accuracy in certain classes between the validation and the 
testing dataset may indicate that the data of this class in the training dataset does not 
fully represent it. This can be corrected in new iterations of the workflow by adding 
new data on elements of the landscape that are not represented in the first training 
dataset, by balancing classes and by merging classes that are not able to be spec-
trally separated. The “Wetland” class is an example that needs to be reviewed, since 
it achieves a 96.8% accuracy in the validation but a 63.3% accuracy in the testing. The 
number of samples reveals it is likely that wetlands are under-represented in the orig-
inal training dataset.

The Copernicus GLC has inspired the selection of classes for our map; therefore, a vis-
ual comparison is also interesting. Despite the time gap between the latest GLC product 
(2019) and our product (2021), both maps look similar on a large scale. A significant dif-
ference occurs in the classification of dehesas and montados (in the Iberian Peninsula), 
which are defined in GLC as “open forest”, while they are described as “Grassland” in our 
map (Fig. 6). On a smaller scale (Fig. 6c-d-e), our LC map shows more details because of 
the 10 m pixel resolution, especially linear structures such as rivers and roads. In addi-
tion, as observed in the Sentinel-2 true colour composition, the class accuracy is better 
in our product; for example, the main forest patch in the scene is classified partially as 
shrubland in GLC, as well as many cropland and grassland areas.
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Evaluation of the explainable artificial intelligence (XAI) analysis

The results of the explainability analysis (Fig. 4) show the 20 most important variables 
in the generation of the LC map. The slope band (derived from the ASTER DEM) is the 
most important in the general classification process. This feature has the most impact 
on the open forest, herbaceous vegetation and wetlands classes. Besides, the outcome 
depicts that the AOT (Aerosol Optical Thickness) band in summer and autumn is quite 
relevant in most classes. This is derived from the correlation of shortwave infrared 
(SWIR) with the blue and red bands [74] as introduced by Kaufman et al. [75]. Among 
the Sentinel-2 bands, the most relevant ones are B01 (443 nm), B11 (1613 nm), B12 
(2202 nm) and B09 (945 nm), which correspond to the ultraviolet, SWIR and red edge 
spectra, respectively. They are related to light scattering (which relates to AOT impor-
tance), plant pigment and water content. They seem to be relevant to distinguish veg-
etation from non-photosynthetic objects, as they are influencing the classification or 
built-up areas, as well as different plant types, as they are important for the separability 
of shrublands. in relation, the most remarkable spectral indices are NDYI, RI, MNDWI, 
CRI1, NDVI, EVI2, GVMI and OSAVI, especially in spring, which are also related to 
plant pigments and water content. In contrast with the most relevant Sentinel-2 spectral 
band (B01, B09 and B11), these indices are built mostly on bands B02 (green, 493 nm), 

(a) 10 meters Land cover of the Iberian
Peninsula in 2021

(b) Copernicus global 100 meters Land
Cover of the Iberian Peninsula in 2019.

(c) 10 meters Land cover of
Tordesillas, Spain in 2021

(d) Sentinel-2 10 meters
true colour composite im-
age of Tordesillas, Spain in
March 2021.

(e) Copernicus global 100
meters Land Cover of
Tordesillas, Spain in 2019.

Fig. 6 a, b compares the Iberian Peninsula, while c–e compares a local region in Tordesillas, Spain. All 
the land cover maps have the same labels: Closed and open forests (green and olive), shrubland (orange), 
herbaceous vegetation (yellow), herbaceous wetland (cyan), bare vegetation (grey), cropland (pink), built‑up 
(red) and permanent water bodies (blue)
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B03 (red, 560 nm) and B08 (NIR, 834 nm), showing that the model is using orthogonal 
variables.

Execution time

The proposed methodology comprises many different tasks with different computational 
uses (some of them are time-consuming, others almost instantaneous). Thus, the execu-
tion time should be defined by the execution time of its smaller tasks. This section will 
analyse the execution time of the most relevant tasks. Note that those times depend on 
different variables (e.g., labelled points used, hardware and Sentinel-2 tiles to be pro-
cessed, etc.). Experimentation has used a Dask cluster with 9 workers, as the method-
ology has been implemented to be executed in a distributed environment splitting the 
tasks by tile, being able to process one tile per worker at the cluster in parallel. Each 
worker has available 2 cores from an Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz 
processor, 128GB RAM, and a 100 Gbps of data transfer rate to a distributed RAID 6 
made of NVMEs disks, where the S3 storage is deployed, and the persistent volumes 
(local disks) of the workers are available.

Generating a composite is one of the most time-consuming tasks, as all bands from all 
products used in the composite have to be moved from the S3 storage into RAM. Con-
sider that composites are formed by 2 to 5 products, composed of 14 bands each. This 
also implies performing 14 times the composition operation, pixel-wise medians with 
huge matrices. The times for generating composites depending on the products used are 
shown in Table 3. Note that this time includes uploading the composite to the S3 storage 
and its metadata to the database. If the composite is needed during the execution of the 
workflow or following executions, this time will be skipped.

The next step of the methodology is generating the training dataset from labelled data 
points distributed across one or several tiles. The execution time of this phase depends 
on the number of tiles in which data is available. All S-2 bands and spectral indexes from 
the three seasons used have to be read into memory and organised into a dataset, storing 
that data for the labelled data points. The mean time needed to generate a training data-
set from a single tile is 4’ 12”, with a standard deviation of 12”. Whether this operation is 
executed on a Dask cluster, it is possible to process as many tiles as workers the cluster 
has in parallel, obtaining a considerable improvement in the total execution time of the 
workflow.

Also, the random forest model has to be trained with a dataset built by merging the 
ones generated in the previous step. In our case, a dataframe with ≈ 70000 rows have 

Table 3 Execution time of the whole process of creating a composite, including product download 
from MinIO to RAM

There were 5 executions for each number of products used

Used products Average execution time Deviation

2 08’ 23” 0’ 38”

3 11’ 06” 1’ 00”

4 12’ 08” 0’ 33”

5 13’ 29” 1’ 03”
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been generated from validated data. Using that data, 62” are needed to train the model 
(RFE has not been used, worst-case scenario).

Predicting the land cover of a tile is the most time-consuming task. At 10 m spatial 
resolution a raster over a Sentinel-2 tile has 120.5 million pixels, and each of them has to 
be predicted using the random forest model. In the same way as generating the training 
datasets, the prediction is conducted in a distributed manner. In any case, due to the vast 
numbers of forecasts made in a tile, the mean time needed is 40’, with a deviation of 2’ 
40”.

Having a measurement of those execution times, it is possible to estimate the total 
execution time depending on the number of tiles used in the training phase, tiles pre-
dicted, and the number of workers available in the Dask cluster where the workflow is 
executed:

Where t is the total execution time, tml the mean time for training the machine learning 
model, ttt the time spent in generating the training dataset of one tile, TT the set of tiles 
where the training dataset is split, tpt the time spent predicting a tile, PT the set of tiles 
predicted, tc the mean time for generating a composite, and nw the number of workers in 
the Dask cluster.

Limitations and future research

The whole workflow is designed and optimised to work at the Sentinel-2 tile level, which 
carries advantages and disadvantages. On the one hand, it allows the distribution of 
most tasks due to the independence of each tile, which is significantly advantageous 
when the area of interest is large. Even if computation time is not a problem, merging 
all rasters into a big one is not feasible because 10 ms spatial resolution rasters demand 
high memory for managing them together. On the other hand, some others problems 
and limitations could appear when the tiles are merged. Firstly, all the data from other 
satellites must be reprojected to Sentinel-2 tiles, e.g. harmonising the elevation and 
slope rasters. In this work, we have used ASTER data for that purpose; nevertheless, in 
the case of needing other satellite data (e.g. Sentinel 1 or Landsat-8), this process could 
be intensive in memory and execution time if it is done in oversized tiles instead of par-
alleling the task in smaller ones. Secondly, each Sentinel-2 tile has an overlapping area 
with adjacent tiles. Since this work is creating monthly compositions of each tile using 
different dates, the reflectance in the overlapping regions may not be consistent (there 
is more than one reflectance value in the same area). Therefore the predictions of the 
model could be inconsistent because the model predicts the same areas with different 
values. However, large labelled data will reduce the effect of such inconsistencies. A pos-
sible open solution is to merge all tiles once predicted to create a land cover map, and 
then post-processing should be done to harmonise predictions in the overlapped area. In 
the future, we will study how to resolve this issue during the pre-processing stages.

In addition, the workflow could be easily adapted to re-classify other thematic classes. 
For example, using a training dataset into the model of specific forest types (pine, oak, 
beech, etc.) will generate a forest types’ map. It also would be interesting to add an 

t ≈ tml +
ttt · |TT | + tpt · |PT | + 3 · tc · |TT ∪ PT |

nw
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alternative to the polylabel algorithm used to parse polygons into points, allowing a way 
of sampling the polygon to several points instead of just one. This would be useful to 
users that want to use the classifier in small regions with few validated data.

Conclusions
Environmental protection requires constant monitoring of the status and dynamics of 
ecosystems. In a scenario of human impacts and climate warming, the need for timely 
information becomes more acute to make informed land planning and environmental 
conservation decisions. The current satellite missions provide continuous and frequent 
data for the purpose. However, the challenge is how to process enormous amounts of 
data efficiently. Artificial Intelligence and Big Data science are giving solutions to that 
challenge. In the current paper, a methodological workflow is proposed for the gen-
eration of Land Cover Maps at a large scale (in the case of the Mediterranean region) 
to support the management of ecosystems in the area. The project aims to develop a 
method and a Machine Learning model for mapping that is versatile and reproducible 
in other regions and uses cases, depending on the input data. Our results prove that the 
developed workflow handles large amounts of satellite image data (more than 30,000 ras-
ters have been processed at 10 m pixel resolution and a database with more than 45,000 
records) in a short time. The spectral library generated during the training of the model 
can be reused for data from different years (the current map has been proved on images 
of 2021), which boosts the usability of the method, allowing the generation of yearly LC 
maps to analyse the dynamics of the studied LC classes along the time. Additionally, our 
methodology has been implemented in Python 3.10 and it is distributed under a free and 
open source license.18

Moreover, the use of Artificial Intelligence algorithms improves the accuracy of the 
maps by transferring ground-truth information from some regions to the entire terri-
tory, as the data from only three countries of the Mediterranean basin allowed the pre-
diction of the LC on the rest of the 16 countries that compose the area. In addition, the 
use of homogeneous satellite data and technique enables the creation of an LC map 
of comparable quality for all Mediterranean nations, constituting a reference at the 
regional level in terms of geographical, temporal, and thematic resolution, addressing a 
significant information vacuum in the region. This motivates our future research agenda, 
which entails the first phase to provide data from more countries to improve the LC 
for all Mediterranean areas-furthermore, enriching the ML algorithm with new classes 
for training the model and predicting different elements in the LC, such as more spe-
cific kinds of forests regarding their trees or specific crops. Finally, this would lead us to 
create new LC maps related to climate change or monitoring affected zones by human 
behaviour or natural disasters.
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