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Abstract 

The expanding development of data mining and statistical learning techniques have 
enriched recent efforts to understand and identify metagenomics biomarkers in 
airways diseases. In contribution to the growing microbiota research in respiratory 
contexts, this study aims to characterize respiratory microbiota in asthmatic patients 
(pediatrics and adults) in comparison to healthy controls, to explore the potential of 
microbiota as a biomarker for asthma diagonosis and prediction. Analysis of 16 S-ribo-
somal RNA gene sequences reveals that respiratory microbial composition and diver-
sity are significantly different between asthmatic and healthy subjects. Phylum Pro-
teobacteria represented the predominant bacterial communities in asthmatic patients 
in comparison to healthy subjects. In contrast, a higher abundance of Moraxella and 
Alloiococcus was more prevalent in asthmatic patients compared to healthy controls. 
Using a machine learning approach, 57 microbial markers were identified and used to 
characterize notable microbiota composition differences between the groups. Among 
the selected OTUs, Moraxella and Corynebacterium genera were found to be more 
enriched on the pediatric asthmatics (p-values < 0.01). In the era of precision medicine, 
the discovery of the respiratory microbiota associated with asthma can lead to valuable 
applications for individualized asthma care.
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Background
Asthma is a widespread, long-term respiratory condition affecting more than 358 mil-
lion people worldwide [26]. It is one of the most common non-communicable diseases 
in adults and the single most common chronic disease among children [7, 54]. Asthma 
is mainly caused by underlying inflammation in the lung airways, triggered by various 
stimuli such as viral infections, dust, smoke, animal fur, and tree pollen. Symptoms of 
asthma may include trouble breathing, wheezing, coughing and tightness in the chest, 
whereas asthma attacks are characterized by progressively increasing symptoms and 
severe breathing difficulties [56]. Although many patients may not show signs between 
attacks, untreated asthma attacks can become fatal, even in mild cases [12]. Overall, 
the underlying pathogenesis mechanisms of asthma remain poorly understood, though 
genetic studies have been increasingly able to identify more gene markers and loci 
related to asthma susceptibility [53]. Several risk factors involving gene-gene interactions 
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and gene-environment interactions are believed to influence asthma disease susceptibil-
ity [37]. In epigenetics, the identification of tissue and cell types that are best suited for 
the analysis remains a topic of ongoing research [34].

The word microbiom can be used to define “the ecological community of commensal, 
symbiotic, and pathogenic microorganisms that literally share our body space” [4]. This 
definition covers all microbes, including viruses, bacteria, fungi, archaea and non-fungal 
microscopic eukaryotes [59]. In recent decades, a large body of research has strongly 
suggested that the human microbiota plays a critical role in human health and disease 
[25, 46, 63, 73]. The gut microbiota and gut microbiota-derived metabolites, as well as 
their impact on host metabolism and immunology, have been the focus of most studies 
thus far [15, 23, 27, 48, 55, 70]. Recent research on microbial communities in other bod-
ily locations, such as the respiratory tract, has revealed that the microbiota plays an even 
bigger impact in human health [41, 47, 65]. Chronic respiratory diseases such as asthma, 
cystic fibrosis, bronchiectasis, and chronic obstructive pulmonary disease have all been 
recently linked to identified changes in the microbiota composition or abundance [13, 
20].

Using culture-independent 16 S rRNA sequencing, a recent study revealed variations 
in the microbial communities found in various regions of the healthy respiratory tract 
compared to those identified in the respiratory tract of asthma and chronic obstructive 
pulmonary disease patients (COPD) [44]. In children, similar alterations in the makeup 
and function of the upper airway microbiota have been linked to the exacerbation of 
asthma and other respiratory conditions [38, 50]. In individuals with severe asthma and 
similar phenotypes, certain microbiota were linked to and may influence inflammatory 
processes [33]. In addition, the composition and diversity of the airway microbiota were 
shown to be substantially associated with bronchial hyperresponsiveness in patients 
with subotpimally controlled asthma [32]. The relative abundance of certain phylotypes, 
such as those from the Comamonadaceae, Sphingomonadaceae, Oxalobacteraceae, and 
other bacterial families, was shown to be strongly associated with the degree of bron-
chial hyperresponsiveness [6]. Longitudinal alterations in the nasal airway microbiota 
were also found to mediate the impact of early antibiotic exposure on increased risk of 
asthma [69]. Across multiple works, Proteobacteria appears to be the most prevalent 
respiratory phylum in patients with asthma relative to non-asthmatic controls [30, 49, 
74].

It is not difficult to see that asthma is a multifaceted illness with several distinct phe-
notypes and endotypes. Although respiratory microbiota was shown to influence on 
asthma development, phenotype, and severity; the exact cellular and molecular pro-
cesses underlying these associations have yet to be fully elucidated [10]. As such, an 
important topic for current research is developing better ways to distinguish between 
significant asthma subtypes at the population and individual patient levels [60]. Find-
ing relevant biomarkers and developing a better knowledge of the underlying processes 
associated with this disease makes it possible to advance towards improved treat-
ment options. For this purpose, supervised machine learning algorithms can prove 
advantageous.

Over the past decade, the implementation of machine algorithms in the classifica-
tion and analysis of microbiota and relevant biomarkers has become increasingly more 
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popular. Due to their compatibility with sparse datasets and high dimensional problems, 
supervised machine learning algorithms provide effective ways of analyzing microbi-
ome data at efficient computational costs. Whereas the most prevalent techniques to 
biomarker discovery so far have been taxonomic relative abundance analysis, microbial 
diversity assessments using alpha and beta diversity measures, and beta pattern inves-
tigations utilizing clustering and principal coordinates analyses; these techniques can 
be limited in their ability to categorize unlabeled data and/or extract meaningful fea-
tures from complex datasets [39]. In contrast, many well-known learning algorithms 
can be be used as suitable alternatives in overcoming these issues. A recent study by 
Wang et al. [71] employed a supervised machine learning-based approach for the clas-
sification of Autism Spectrum Disorder (ASD) based on virulence factor-related gut 
microbiota (VFGM) genes and Immunoglobulin A levels. Other works have similarly 
employed machine learning techniques for the analysis of gut and salivary microbiota 
in the diagnosis of diseases like colorectal cancer and liver disease [2, 9, 35]. In the study 
of asthma, Sharma et al. [64] discovered significant correlations between specific clinical 
parameters and predicted bacterial functional pathways using generalized linear mod-
els and the random forest classifier. Their findings highlighted a possible relationship 
between asthma-related phenotypes, endotypes, and fungal and bacterial microbiota. 
On the other hand, results showed no significant differences in fecal microbiota compo-
sition between adult asthmatics and non-asthmatics when extremely randomized trees-
based machine learning models were used to analyze the characteristics of the intestinal 
microbiota [43]. In children, an unsupervised machine leaarning appraoch revealed that 
altered longitudinal patterns in the nasal microbiota contributed to a higher chance of 
developing asthma [68].

Building on previous research in which the composition, diversity, and functionality of 
respiratory microbiota were examined across a sample of pediatric and adult asthmatic 
patients [11]; this study seeks to further characterize the microbiota in asthmatic patients 
relative to healthy controls using a machine learning approach, while also exploring the 
associations between microbial markers and clinical demographics. To tackle the chal-
lenge of analyzing a sparse dataset of nearly 5853 operational taxonomic units (OTUs) 
for only 40 subjects, we utilized a combination of machine learning and advanced statis-
tical techniques to identify a collection of the most relevant OTUs. By utilizing wrapper 
techniques, a bootstrap framework for aggregating within and between feature selec-
tion methods, and validating our findings using four popular classification algorithms; 
we were able to identify 57 biomarkers that characterized notable microbiota composi-
tion differences between healthy controls and asthmatic patients, including age-specific 
alterations. This study not only provides a noteworthy example of how big data analysis 
can be applied in Metagenomics but also highlights the importance of advanced tools 
and techniques in extracting valuable information from complex, high-dimensional 
data. Furthermore, our findings contribute to the growing body of knowledge about the 
relationship between respiratory microbiota and the diagnosis of asthma, underscoring 
the potential of big data analysis to shed light on complex research questions.
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Methods
Participants

All participants were Emiriti residents of Sharjah, UAE. Asthma patients, defined as 
individuals with a current diagnosis of asthma, were recruited at the Sharjah Univer-
sity Hospital, UAE. Individuals who did not report having current or previous asthma, 
eczema or hay fever were defined as controls. Both study groups included adults and 
pediatrics. Demographic variables such as age, BMI, and gender were also recorded. All 
of the patients included for further analysis did not smoke, have any other respiratory 
diseases or infections, and did not use antibiotics and/or prescribed probiotics in the 
past 3 months. This protocol was approved by the Hospital Ethics and Research Com-
mittee, at the Sharjah University Hospital, UAE. All research participants provided their 
informed consent.

Sample collection and DNA extraction

Spontaneous expectorated sputum samples were obtained from all study participants. 
The obtained samples were spontaneous coughed up sputum (expectorated phlegm/
mucous), collected after a productive cough. Sputum induction was utilized, particularly 
with children. All samples were collected and stored in a sterile sputum container, stored 
into liquid nitrogen and then transferred to −80  °C for additional analysis. Sequenced 
16Sv4 amplicons were generated from the DNA samples on a MiSeq system. The 
mothur software package was then used to filter, identify and cluster optimal sequences 
into operational taxonomic units (OTUs). For the purposes of this research, ecological 
analysis was carried out on the sample-by-taxon abundance matrix. The raw sequences 
utilized for this study have been uploaded to the UCI Machine Learning Repository [3].

Traditional approach

In the first part of the analysis, traditional ecological assessment tools were employed. 
These methods tend to rely on investigating the distribution of microbial diversity within 
and between samples, in addition to analyzing the differential abundance of taxa among 
samples belonging to either of the investigated groups. Due to the nature of sample-by-
taxon abundance matrices, zero counts can make up for a large proportion of the input 
matrix in these analyses [31]. As a result, the investigation of microbial communities 
using traditional approaches tends to be impeded by dataset sparness. To counteract the 
issue in this research, spurious OTUs were first filtered out of the data. Then, the inves-
tigation was carried out through a comprehensive examination of the compositional and 
biodiversity alpha and beta indices. Finally, differential analysis using linear discriminant 
analysis with effect size (LEfSe) was implemented.

In detail, alpha and beta-diversity analyses were implemented between the asthmatic 
patients and healthy control group. The alpha diversity values included species diver-
sity indices (Shannon and Simpson) and species richness indices (Ace and Chao). A 
normalized OTU abundance table was used for the beta diversity analysis, estimated by 
Bray-Curtis Dissimilitudes and visualized using Principal Coordinates Analysis (PCoA). 
To identify dominant taxa between the groups, linear discriminant analysis with 
effect size (LEfSe) was used. Inside this implementation, the non-parametric factorial 
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Kruskal–Wallis (KW) sum-rank test is first implemented to detect features with signifi-
cant differential abundance with respect to the class of interest; and biological signifi-
cance is then investigated using a series of pairwise tests among subclasses using the 
(unpaired) Wilcoxon rank-sum test. Finally, the effect size of each differentially abundant 
feature is approximated by using linear discriminant analysis scores [62].

Machine learning approach

In the second part of the analysis, a machine learning approach was used to identify 
discriminative microbial markers across the asthmatic and healthy control groups. In 
ecological research, the structure of the input matrix can make supervised learning chal-
lenging to implement. Due to the high number of features in the sample-by-taxon abun-
dance matrix, classification methods might overfit the data, resulting in models that 
cannot generalize well to new observations. For this reason and to lower the computa-
tional costs, reducing the number of features is often recommended. In this work, Wil-
coxon-rank sum test (with FDR adjustments) was used to find top 1000 OTUs with the 
most significant differences between the two groups. Next, a number of feature selection 
algorithms were implemented to obtain a subset of the most informative OTUs out of 
these 1000.

Using a five-fold cross-validation precedure, a tuned Random forest model was first 
used to obtain the most important OTUs based on the mean decreased Gini Coeffi-
cient. In addition, an extension of Support Vector Machine Recursive Feature Elimina-
tion (namely multiple SVM-RFE), which uses resampling techniques at each iteration 
of a five-fold cross-validation to stabilize its feature rankings, was also utilized to obtain 
discriminative biomarkers. Finally, we applied a score-based ensemble feature selection 
framework based on bootstrap-induced diversity [61]. Within this approach, results were 
aggregated within and between multiple feature selection methods. Due to their compu-
tational efficiency, the following four traditional filter techniques were used inside the 
ensemble: Information Gain (IG), Symmertric Uncertainty (SU), Minimum Redundancy 
Maximum Relevance (MRMR), and Chi-Squared method (CS). To this end, 500 boot-
strap samples were generated to obtain feature importance scores from each bootstrap; 
the importance scores were then aggregated within each single feature selection method 
(WAM) and between the different feature selection methods (BAM). Per its simplicity 
and efficiency, the aggregation was done using arithmetic mean. The ensemble was thus 
implemented to increase the robustness of the feature selection process and improve the 
accuracy of the predictions. These frameworks are illustrated in Additional file 1: Fig. S1.

Once all feature rankings were obtained, union of sets was used to combine the most 
important OTUs across the Random Forest, SVM-RFE, aggregated IG, aggregated CS, 
aggregated MRMR, aggregated CS, and the Between-Aggregation (BAM) results. Three 
different thresholds were used for the union: union of the 5 most important OTUs across 
all sets, union of the 10 most important OTUs across all sets, and union of the 20 most 
important OTUs across all sets. Upon comparing the unions with the individual feature 
selection methods, the final number of selected microbiota was based on Area Under 
the Receiver Operator Curve (AUROC) [28], using the four classifiers: Logistic Regres-
sion [24], Naive Bayes [36], Random Forest, and Support Vector Machine [16]. In data-
sets such as the one used in this work, the goal is not to predict the label classifications 
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of the data, but to use supervised learning to construct descriptive models that would 
aid in explaining the relationships between features (OTUs) in the sample-by-taxon 
abundance matrix. In this manner, our aim is to identify a small, but highly discriminitve 
subset of OTUs from the thousands of profiled genes and to utilize this subset for fur-
ther study. Nonetheless, evaluation of the accuracy performance of the descriptive mod-
els will still be valuable for validating the quality of the feature selection process.

Statistical analysis

Given the small sample size, Fisher’s exact test [22] was used to compare any qualita-
tive data in the analysis. All differences in the continuous data were compared using the 
Mann–Whitney U-test [52], or the Kruskal–Wallis test [51]. The Bonferroni technique 
was used to adjust the p-value after multiple comparisons for the false discovery rate 
(FDR). All tests were two-sided, and p-value < 0.05 was considered statistically signifi-
cant. All statistical analyses were performed with the relevant packages in R. LEfSe was 
performed using the relevant module in the Galaxy web platform [1].

Results
Clinical characteristics of the recruited subjects

In total, 40 spontaneous expectorated sputum samples were collected from 21 asth-
matic patients and 19 healthy controls. Table 1 present quantitative descriptives for each 
of the subject groups. The mean age of asthma patients was 28 years. and 32 years for 
healthy subjects. The mean BMI of asthma patients was 22.10 Kg/m2 , and 26.57 Kg/m2 
for healthy subjects. Comparisons between the two groups using Mann–Whitney U test 
revealed no significant differences in age or BMI (adjusted p-values 0.5066 and 0.1759 
respectively). Fisher’s exact test likewise revealed no statistically significant association 
between the groups and gender (p-value = 1). When accounting for pediatric and adult 
subjects, it was not surprising to observe signifcant differences between the four groups 
(Adult Asthma, Adult Healthy, Pediatric Asthma, Pediatric Healthy) under age and BMI 
(adjusted p-values < 0.001). Pairwise Mann–Whitney comparisons adjusted using Ben-
ferroni attributed the significance to differences in age between the adults and pediatrics, 
as expected (adjusted p-values < 0.005), and to differences in age between the healthy 
and asthmatic adult subjects (adjusted p-value=0.005). Finally, the significant differ-
ences in BMI were attributed to significant differences between the adult asthmatics, 

Table 1  Description of quantitative participant characteristics

Adult asthma 
(N=10)

Adult healthy 
(N=10)

Pediatric asthma 
(N=11)

Pediatric healthy (N=9)

Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev

Age 63.90 12.66 40.00 10.55 6.73 4.15 8.00 3.12

BMI 31.47 6.71 25.26 4.73 21.58 7.25 18.24 5.23

Gender 
(M%, F%)

30:70 20:80 45:55 56:44

Animal 
exposure 
(yes %)

0% 20% 9% 11%
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and either of the asthmatic pediatrics or healthy pediatrics (adjusted p-values 0.029 and 
0.04 respectively). However, gender differences between the four groups were still not 
considered significant (p-value = 0.4128). For a full description of the recorded demo-
graphics, see Additional file 1: Table S1.

Sequencing characteristics and diversity

Bacterial DNA was extracted from the spontaneous expectorated sputum samples 
using 16 S rDNA sequencing. The 16Sv4 amplicons generated from DNA samples were 
sequenced on a MiSeq to obtain a dataset with 5853 OTUs. Per sample, an average of 
42,657 quality-filtered reads were generated. Greengenes was used as the reference data-
base to classify the Bacteria taxonomic composition generated from the obtained high-
quality reads. Finally, OTUs were aggregated into each taxonomic rank. To address the 
difference in sequencing effort across samples (i.e. total numbers of sequences per sam-
ple being largely different), we applied a proportional transformation function and based 
our analysis on the proportional abundance of each species. The number of OTUs in 
each of the two groups asthmatic and healthy was 2760 and 5079, respectively. Around 
24% of the 5853 OTUS overlapped between the two sample groups.

In Additional file  1: Figs. S2A, S2B, we identify the most abundant 20 OTUs across 
the recorded sample groups and visualize their relative abundance at the genus-level and 
phyla-level. Each bar length represents the mean fraction abundance of that OTU among 
the normalized samples in the same group. The unfilled portion of the bar represents 
unclassified or lower-abundance OTUs. At the Phylum-level, Firmicutes, Bacteroidetes, 
Proteobacteria, Fusobacteria, and Actinobacteria were the most abundant entities in 
the respiratory microbiota (in this order). Additionally, our findings agree with previous 
works that Proteobacteria seems to be the most prevalent respiratory phylum in patients 
with asthma in comparison to healthy controls. We also note some differences in the 
relative abundance of Actinobacteria and Fusobacteria. At the genus-level, asthmatic 
subjects showed particular abundance in Moraxella, Alloiococcus, and Staphylococcus; 
whereas healthy subjects showed greater relative abundance across the Prevotella, Por-
phyromonas, Fusobacterium, and Veillonella genera.

To study the variations in the respiratory microbiota across the groups, alpha diver-
sity metrics were calculated and represented in Fig. 1A. According to the Chao and Ace 
diversity indices, the mean community richness is significantly lower in the asthmatic 
groups (adjusted p-values  <  0.001) than in the healthy controls. Moreover, accord-
ing to the Shannon and Simpson diversity indices, the microbial diversity was signifi-
cantly lower in asthmatic subjects than in the healthy controls (adjusted p-vlaue < 0.001 
and p-value  =  0.002 respectively). Using Bray-Curtis dissimilarities, the normalized 
OTU abundances were aggregated and visualized using Principal Coordinates Analysis 
(PCoA) as seen in Figs. 1B, C. At the three-dimensional space (Fig. 1B), it appears larger 
positive scores on PCoA1 characterize a cluster of asthmatic subjects. This is further 
reinforced by the PCoA1 vs PCOA2 and PCoA1 vs PCoA3 plots in Fig. 1C. On the other 
hand, several asthmatic and healthy control subjects cluster around zero or relatively low 
values for PCoA2 and PCoA3. Nevertheless, Analysis of Similarities (ANOSIM) revealed 
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(B) PCoA of Bray-Curtis distances across the samples in 3D-space
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(A) Alpha diversity measures in the samples

Fig. 1  Overview of alpha and beta diversity analysis of respiratory microbiota between asthmatic patients 
and healthy subjects. A The graph depicts the alpha diversity boxplots for Chao1, ACE, Shannon and 
Simpson diversity indices distinguishing asthmatic patients and healthy control subjects. Plotted are 
interquartile ranges (boxes) and lines in the middle of the boxes are medians. Statistical analysis performed 
with paired Wilcoxon tests reveals significantly higher microbial diversity in healthy subjects (adjusted 
p-values< 0.05 ). B, C The plots depict Principal Coordinates Analysis based on the Bray-Curtis index between 
the above-mentioned groups in the 2D-plane and 3D-space. Some clusters of asthmatic patients can be 
observed on high values of PCoA1. Statistical analysis was performed with Analysis of Similarities (ANOSIM), 
and p-values were significant (P = 0.007, R = 0.1145)
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significant variations in beta-diversity across asthmatic and healthy groups (P = 0.007, 
R = 0.1145).

A Linear discriminant effect size analysis (LEfSe) was used to identify differences in 
microbial composition between asthmatic patients and healthy control groups. By com-
bining standard tests for statistical significance with other tests concerning effect rel-
evance and biological consistency, LEfSe determines the OTUs most likely to explain 
differences between classes. At the genus level, LDA scores showed significant differ-
ences in microbiota composition between asthmatic patients and healhty controls. Using 
a threshold of absolute LDA score 3.5 and p < 0.02 , further analysis showed that Morax-
ella and Alloiococcus were more abundant in the asthmatic group, while Veillonella, 
Fusobacterium, Porphyromonas, Prevotella, Leptotrichia,Oribacterium, Treponema, 
Akkermansia, Lautropia, and Blautia genera were enriched in the healthy control group. 
In Fig. 2B, the bacterial tree at the center point is extended to each ring, which repre-
sents the next lower taxonomic level from phylum to genus. Yellow circles indicate non-
significant differences, whereas green and red circles indicate significant differences 
between healthy and asthmatic subjects.

The cladogram demonstrates that many species (shown in yellow) were common 
between the healthy and asthmatic subjects, but there were also some distinct differ-
ences. According to the cladogram, only certain bacterial genera among Moraxella and 
Alloiococcus were more abundant in the asthmatic group. Meanwhile, Bacteroidetes 
(including the class Bacteroidia; the order Bacteroidales; and the families Paraprevo-
tellaceae, Porphyromonadaceae, and S24_7), Verruomicrobia (including the class Ver-
rucomicrobiae, the order Verrucomicrobiales, and the family Verrucomicrobiaceae), 
Spirochaetes (including the class Spirochaetes, the order Spirochaetales, and family Spi-
rochaetaceae), Fusobacteria (including the class Fusobacterila, the order Fusobacteriales, 
and the families Leptotrichiaceae and Fusobacteriaceae), and lastly Firmicutes (including 
the class Clostridia, the order Clostridiales, and the families Veillonellaceae and Lach-
nospiraceae) were all more abundant in the healthy control group. Despite no signifi-
cant differences between the two groups, some Proteobacteria genera were also more 
enriched in the healthy subjects.

Classification predictors

To distinguish the most discriminative respiratory microbiota in inferencing asthmatic 
and control groups, a machine learning feature selection approach was used. First, a 
Random Forest (RF) model was implemented for distinguishing between the two groups, 
with the most predominant genera identified on the basis of importance scores using 
the mean of the class-specific decreases in Gini Coefficient (Additional file 1: Fig. S3A). 
Next, a backward elimination procedure similar to that used in Recursive Feature Elimi-
nation for Support Vector Machines (SVM-RFE), computed the feature ranking scores at 
each step using a statistical analysis of the weight vectors of multiple linear SVMs within 
a five-fold cross-validation framework [19]. Thus, two separate OTU ranked lists were 
obtained. Finally, four filter feature selection methods (Information Gain, Symmetric 
Uncertainty, Chi-Squared test, Minimum Redundancy Maximum Relevance) were uti-
lized within the feature selection ensemble described in the Methods section, yielding 
four Within-Aggregated (WAM) and one Between-Aggregated (BAM) feature selection 
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Fig. 2  Linear discriminant effect size analysis (LEfSe) between asthmatic patients and healthy control groups. 
LDA score> 3.5 and p = 0.05 were used in the analysis. Each identification is provided on the right (red) for 
ashmatic patients and on the left (green) for healthy controls, while the relevant pathways, or the names 
of the bacterial biomarkers, are also displayed for each entry. Most significantly differential bacterial genera 
was enriched on the healthy control subjects, with Moraxella and Alloiococcus being more abundant in the 
asthmatic group
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results. These five ranked lists are hereby referred to as IG, SU, CS, MRMR, and AM for 
the arithmetic mean based between-aggregation. Union of the seven ranked lists (IG, 
SU, CS, MRMR, AM, SVM-RFE and RF) was done using different thresholds, identifying 
the 20, 10, and 5 most important OTUs in each of the ranked lists. Per the feature sec-
tion threshold, we will refer to these sets as union20, union10, and union5.

To assess the effectiveness of each of the sets in comparison to the individual ranked 
lists, and to determine the final selection of the most important OTUs; we tested all 
selected feature sets against the four classifiers: Logistic Regression, Naive Bayes, Ran-
dom Forest, and Support Vector Machine (SVM). The model classification procedure 
was done within a five-fold cross-validation loop. Then, the accuracy of the predictive 
models was determined using AUC (Area under the Receiver Operator Curve). The 
obtained results are represented by Fig. 3A. Note that each of the union sets has a fixed 
number of features: 15 OTUs in union5, 28 OTUs in union10, and 57 OTUs in union20. 
This is why the union sets’ accuracies are represented by horizental lines in Fig.  3A. 
Regarding model tuning, the Naive Bayes model used default parameters, with no Lapla-
cian correction, and the prior probabilities of class membership were set based on the 
class proportions from the training set. Normal density estimation was also applied. 
Logistic Regression used a weakly informative default prior distribution with coefficients 
set to prior mean and scale of 0 and 2.5, and intercept set to prior mean and scale of 0 
and 10, respectively. Degrees of freedom were set to 12 for coefficients and 1 for inter-
cept. Random Forest utilized 500 trees with √p randomly sampled as candidates at each 
split, where p denotes the total number of features. SVM utilized a radial basis function 
kernel with gamma set to 1p and the cost parameter to 1. The insensitive-loss function 
used a 0.1 epsilon, and class weights were defaulted to 1. Based on their published per-
formance in machine learning applications with high dimensionality, we expect these 
classifiers to provide a good performance benchmark. It should be highlighted, never-
theless, that for this portion of the analysis, our primary objective is not to achieve high 
prediction accuracy, but to use a limited set of informative OTUs to discriminate 
between healthy and asthmatic samples for further investigation.

In three of the classifiers, the model AUC improves upon selecting the most relevant 
OTUs. In line with previous work, the Random Forest classifier appears to be the strong-
est predictor [39]. In the Naive Bayes classifier, the arithmetic mean based between-
aggregation (AM) seems to be the best identifier of OTU selections. Meanwhile in 
Random Forest, there is greater overlap between the accuracies derived from the feature 
selection results. However, in both logistic regression and SVM, it appears that the best 
AUC is obtained by using the union20 set. Accordingly, we believe that a union of the 
20 topmost ranking features in each of the lists might be most productive. All identified 
OTUs (p = 57) are displayed at the family, genus, and species levels in Additional file 1: 
Table S2. Note that many of the identified OTUs in the machine learning approach agree 
with our findings using traditional means. To further expand on these observations, we 
analyze our selected OTUs and their discriminative powers with respect to their micro-
biota compositions.

In Fig.  3B, the displayed heatmap shows the relative abundance of each of the 
selected genus-level microbiota across the 40 samples. From the figure, it is clear 
that most of our 57 identified OTUs are more enriched in the healthy group samples 
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in comparison to the asthmatic group, emphasizing the validity of our results. 
Mann–Whitney U-test (adjusted for FDR) reveals that the observed abundance 
differences are significant in 43 of the selected OTUs (see Table  S2 for p-values). 
In particular, we note multiple significant identifiers at the genus-level such as 
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Fig. 3  OTU feature selection results. A The classification performance of the most important bacterial 
microbiota (OTUs) selected by each of the feature selection approaches used in the study: AM, CS, IG, 
MRMR, and SU are based on ensemble feature selection; RF and SVM are wrapper-based feature selection 
techniques; Union5, Union10, and Union20 combine the feature selection results. Under four classifiers, 
the selected OTUs can distinguish asthmatic subjects with nearly 99% AUC accuracy. B A subset of the 
most important 57 bacteriaal microbiota (OTUs) for asthmatic diagnosis developed by the feature selection 
methdology (Union20). The heat map shows the relative abundance of the 57 most important bacterial 
microbiota (OTUs) for asthmatic diagnosis
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Lachnoanaerobaculum, Sutterella, Oribacterium, Actinomyces, Selenomonas, Rothia, 
Cardiobacterium, Corynebacterium, Clostridium, and several unclassified bacteria 
(adjusted p-values<0.01). In constrast, a significantly greater abundance of Morax-
ella and Alloiococcus (adjusted p-values 0.008 and 0.036) was prevalant among the 
asthmatic samples compared to the healthy subjects, consistently with previous 
LEfsE and microbiota abundance analysis results. At the genus-level, biomarkers 
which showed greater relative abundances across the asthmatic and healthy groups, 
such as Moraxella, Alloiococcus, Prevotella, Porphyromonas, and Fusobacterium, 
were all selected by the machine learning approach. Likewise, biomarkers identified 
using LEfsE, whether differentially abundant among healthy subjects such as Lep-
totrichia, Prevotella, Blautia, Porphyromonas, and Akkermansia; or among the asth-
matic patients, such as Moraxella and Alloiococcus, were also selected.

Effect of age

At the age level, the number of OTUs in each of the four groups Adult Asthma, 
Adult Healthy, Pediatric Asthma, and Pediatric Healthy was 1815, 1554, 945, and 
3525 respectively. Only around 5% of the 5853 OTUS overlapped between the four 
sample groups. In terms of relative microbial abundance, Figure S4 reveals visible 
differences between the most genus-level abundant OTUS. At large, Moraxella is 
distinctly more abundant in pediatric asthmatic subjects than in any other group, 
whereas Veillonella exhibits the least abundance on pediatric asthmatics. Across 
adult subjects, differences between Prevotella, Streptococcus, and Neisseria are nota-
ble between healthy and asthmatic adults.

According to the Chao and Ace diversity indices, the mean community richness 
is significantly lower in the pediatric asthmatic subjects than in any other group 
(adjusted p-values < 0.001), and similarly less diverse on Shannon and Simpson 
diversity indices (adjusted p-value < 0.001 and p-value = 0.002 respectively). Using 
Bray-Curtis dissimilarities, Principal Coordinates Analysis (PCoA) in Figure S5B 
reveals a cluster of pediatric asthamtic subjects with higher loadings on PCoA1 and 
a cluster of healthy adult subjects negatively loaded on both PCoA2 and PCoA3. 
Analysis of Similarities (ANOSIM) also shows significant differences in beta-diver-
sity across the different age subgroups (P = 0.001, R = 0.3369).

Based on the selected 57 OTUs using the machine learning approach, Fig.  4A 
reveals that Atopobium, Actinomyces, Oribacterium, Prevotella, Fusobacterium, 
and Selenomonas were all more prevalent across the healthy pediatrics and both 
healthy and asthmatic adults, but not in pediatric asthmatics (pairwise adjusted 
p-values<0.05). On the other hand, some bacteria such as Moraxella and Corynebac-
terium could be identified in significantly greater abundances among the pediatric 
asthmatics (pairwise adjusted p-values<0.01). In Fig. 4B, Kruskal Wallis was used to 
test significantly differentially abundant Phylya in the selected OTUS across the age 
subgroups. This included SR1, Fusobacteria, TM7, Bacteroidetes, Firmicutes, Proteo-
bacteria, and Verrucomicrobia. In particular, Proteobacteria shows significant abun-
dance among the pediatric asthmatic subjects. This is in line with previous results 
across prior subsections.
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Discussion
Recent technological advances and the rapid development of bioinofrmatics analy-
sis methods have increasingly identified associations between disease and microbiota 
within the human body. Differences in the microbial populations in the respiratory air-
ways have always been related to the diagnosis of asthma across many studies. In the 
current work, we characterize the respiratory microbiota in asthmatic versus healthy 
patients, with further emphasis on the subject age group (i.e. adults and pediatrics). The 
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(A) Heatmap of the selected OTUs in union50 (Age Subgroup)

(B) Significantly differentially abundant Phyla in Union50 under different Age Sub-
groups using Kruskal-Wallis test

Fig. 4  OTU feature selection results by Age Subrgoup. A The heat map depicts the relative abundance of the 
57 most important bacterial microbiota (OTUs) for asthma diagnosis identified using the machine learning 
approach. The colors depict each OTU’s relative genera abundance among the tested subjects, grouped 
by age and ashtma diagnosis. B The figure depicts the Kruskual Wallis analysis of significant differential 
abundance of the 57 most important bacterial microbiota (OTUs) identified using the machine learning 
approach. The boxplots depict the relative phyla abundance of the selected OTUs among the tested subjects, 
grouped by age and ashtma diagnosis. Significant differential abundance can be observed among these 
phyla, as indicated by the adjusted p-values
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results demonstrate that the respiratory microbiota’s taxonomic composition and diver-
sity were all significantly different between healthy and asthmatic samples. Proteobac-
teria especially dominated respiratory microbiota compositions in asthmatic patients 
at the phyla level and Moraxella at the genus level. Moreover, we found that multiple 
microbiota genera were more abundant across the healthy controls than the asthmatic 
patients.

As highlighted by the traditional ecological assessment methods, greater diversity and 
richness of respiratory microbiota could be observed in healthy samples compared with 
asthmatic patients. These results were supported by previous literature findings using 
alpha and beta diversity measures [5, 18, 29]. In line with this, it has been observed that 
antibiotic use in early life was associated with the development of childhood asthma, 
since it could lower microbial diversity and affect microbial composition [42, 72]. Sev-
eral works have also shown that people who grow up in surroundings with high micro-
biological diversity have a much lower chance of developing asthma [14, 21, 40]. In this 
manner, diversified microbial environments can promote diversified human microbiota, 
leading to reduced risk of atopic illness development and improved lung function, espe-
cially among pediatrics [17, 41]. Using the traditional ecological approach, our findings 
in this work emphasize the difference in microbial composition between healthy and 
asthmatic patients, and further validate the results obtained by the machine learning 
framework. In terms of the most prevalent genus-level taxa, Prevotella, Porphyromonas, 
Rothia, were more abundant in healthy individuals, while more significant amounts of 
Moraxella, Alloiococcus, Streptobacillus were abundant across asthmatic subjects. In 
terms of age, pediatric asthmatics were particularly numerous in the Moraxella and 
Alloiococcus genera, whereas adult asthmatics had a higher enrichments of bacterial 
microbiota from the Streptococcus and Prevotella genera than the other groups. In gen-
eral, differences between the adult subjects could be characterized across Prevotella, 
Streptococcus, and Neisseria genera, in line with previous work [41].

We characterize the most pertinent microbiota associated with discriminating asth-
matic samples from healthy controls using a machine learning approach. A union 
of multiple ranked lists across several feature selection methods was identified. The 
selected subset of 57 bacterial families resulted in prediction accuracy nearly equal or 
even higher than that of classifiers trained on most OTUs. Upon further analysis, these 
OTUs provide primary evidence that the respiratory ecology in asthmatic patients dif-
fers from that of healthy people. This is supported by the findings for both the traditional 
approach and machine learning framework. Across both results, increased abundances 
of the identified Moraxella and Alloiococcus biomarkers could be observed in asthmatic 
patients, whereas Prevotella, Porphyromonas, Fusobacterium, Leptotrichia, Blautia, and 
Akkermansia genera were identified for the healthy subjects. Additional identifiers at the 
genus-level were uniquely considered through the machine learning approach, including 
Streptococcus, Cardiobacterium, Corynebacterium, Clostridium, Sutterella, and Actino-
myces. According to an Australian birth cohort study, early Streptococcus colonization 
was significantly associated with a younger age of first respiratory illness and a persis-
tent wheeze in preschool age, especially among those with early allergic sensitization. 
[67]. Similarly, Prevotella has been observed to be the most abundant genera in the lungs 
of healthy subjects, whereas Staphylococcus and Haemophilus were more abundant in 
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asthmatic patients within a sample of 47 subjects [30]. In other literature, healthy sub-
jects showed higher abundances of Streptococcus, Veillonella, Prevotella, and Neisseria 
of phylum Firmicutes compared to asthmatic and COPD patients [57, 77], supporting 
the current findings.

In analyzing the effect of age, our findings noted significant Proteobacteria abundance 
among the pediatric asthmatic subjects, and significant differential abundances in other 
Phyla such as Bacteroidetes and Fusobacteria. Among the selected OTUs, Moraxella and 
Corynebacterium genera were significantly more enriched on the pediatric asthmatics. 
These results were in line with several studies which have found an increase in the phy-
lum Proteobacteria, particularly the species Haemophilus, among asthmatic patients. 
[30, 49, 66, 74]. A recent work by Hauptmann and Schaible [29] also revealed that Pro-
teobacteria was found in greater abundance in asthmatic children’s airway microbiota 
than in healthy controls; Bacterioidetes was more prevalent in asthmatics overall. Our 
findings are also consistent with earlier studies showing reduced enrichment on Bacte-
roidetes and Fusobacteria in both non-severe and severe asthmatic groups in comparison 
to the healthy group, and Firmicutes showing higher enrichment in severe asthmatics 
[8, 74]. Among school-aged children with asthma, a longitudinal study recently revealed 
that a shift to Moraxella colonization at the Yellow Zone (where the patient’s symptoms 
are at danger of progressing to a severe exacerbation), as well as a decreased Corynebac-
terium abundance, were both linked to an increased risk of severe exacerbations the fol-
lowing year [75].

On the other hand, it should be noted that the feature selection subsets which com-
prised of a smaller number of relevant bacterial families (i.e., 10, 5) did not perform as 
well under most classifiers, suggesting that too small of a species count might be inad-
equate for defining the respiratory microbiota associated with asthma. This discovery 
implies that respiratory dysbiosis in asthma is caused by a complicated interaction of 
many bacterial and fungal groups. Previous works has suggested that the Moraxellaceae 
family and its genus Moraxella, alongside three key fungal species, exhibit substantial 
interactions with the airway microbiota [45]. In this work and others, the ecological dif-
ferences between asthmatic and non-asthmatic patients, especially children, have been 
largely associated with differences in Moraxella gene expression [18, 49, 58, 75]. These 
bacterial colonizations are further observed to alter the likelihood and severity of viral 
infections. For example, when the respiratory syncytial virus is present, an airway micro-
biome dominated by Moraxella predisposes to lower respiratory tract infections and 
raises the risk of fever [67]. However, the influence of environmental diversity should 
still be considered, as indicated by previous findings in which the link between Morax-
ella and asthma was only evident in non-farm children [18]. Longitudinal research is 
needed to further understand the relationship between asthma development and 
Moraxella colonization.

In conclusion, we discovered several respiratory bacterial species linked with asth-
matic patients, shedding further insight on the respiratory microbiota effects on asthma 
pathogenesis with respect to age. Using a machine learning approach, our study identi-
fied 57 relevant microbial markers in diagnosing and characterizing asthma. Many of 
the findings agreed with the traditional ecological assessment methods used in this work 
and could further identify additional biomarkers supported by previous literature. We 
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show how various current supervised machine learning approaches may be used to reli-
ably classify asthma diagnosis and select highly discriminative subsets of taxa for further 
exploration. This approach is beneficial when the the number of independent features 
or the intricacy of their interconnections make univariate hypothesis testing ineffective.

The findings emphasized here could contribute to a better knowledge of the identifica-
tion and composition of the respiratory microbiota in asthmatic patients, which might 
affect the use of the microbiome as a treatment strategy for chronic respiratory illnesses 
like asthma. However, a limitation of the present study that could prevent extrapolation 
of the results was the small sample size, as only 40 respiratory microbiota spontaneous 
expectorated sputum samples were used. Due to the high dimensionality in the sample-
by-taxon abundance matrix, some filtering was processed on the data prior to imple-
menting the machine learning approach. Several strategies for reducing the amount of 
OTU features utilizing correlation and taxonomy information have been recently devel-
oped [76]. Performing dimensionality reduction by decreasing the phylogenetic speci-
ficity of taxonomic groupings, or leveraging the inherently hierarchical structure of the 
OTUs using an algorithm like hierarchical feature engineering (HFE) are other possible 
alternatives [39]. Alpha and beta diversity analyses of the data are also likely to provide 
useful features for classification so a combination of both the traditional and machine 
learning methods may be implemented. Finally, this study’s utilization of spontaneous 
expectorated sputum samples in this study made it difficult to distinguish the lower res-
piratory tract microbiota from upper respiratory tract microbiota. Future research may 
traverse further deep into the relationship between respiratory microbiota and its loca-
tion in the respiratory tract, in line with the microbiota community’s influence on res-
piratory diseases like asthma.
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The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40537-​023-​00767-8.

Additional file 1: Figure S1. Overview of the ensemble feature selection framework. The dataset is first divided into 
a training dataset, and a testing dataset. Then, multiple training subsamples are generated by bootstrapping the 
training dataset. Next, a number of feature selection techniques FS1, . . . , FSt are applied on each subsample, gener-
ating a feature importance score ℓj ∈ R for every feature. The aggregation is thus two-fold; Within Aggregation Meth-
odis used for aggregating the importance scores within a single feature selection method and Between Aggregation 
Methodis used for aggregating the importance scores between different feature selection methods. Once the fea-
ture set is sorted from the most to the least important, a rank vector is obtained and used to characterize the most 
important OTUs. Table S1. Description of data characteristics. Figure S2. Microbial abundance by Asthma Group.
Phylum composition was compared among the asthmatic patients and healthy controls using the the 20 most 
abundant OTUs. In the graph, the relative abundance is expressed as the mean value for each group. At the Phylum 
level, Proteobacteria was more enriched in subjects with asthma relative to controls.At the Genus level, Moraxella, 
Alloiococcus, and Staphylococcus most frequently dominate the respiratory samples from asthmatic patients, 
whereas Prevotella, Porphyromonas, Fusobacterium, and Veillonella dominate the respiratory samples from healthy 
controls. Figure S3. Diagnostic models based on microbiota selected by a Random Forest model with 250 trees 
and 50 variables randomly sampled as candidates at each split. The size of terminal nodes was fixed to a minimum 
of 1.The most important bacterial microbiotaare listed in descending order of relevance by mean decrease in Gini 
Coefficient. The mean decrease in Gini coefficient is a measure of how each OTU contributes to the homogeneity 
of the random forest’s nodes and leaves. The greater the mean decrease in Gini coefficient, the more important the 
feature is for the Random Forest classifier.ROC curves for the Random Forest classifier on which the OTU importance 
scores were obtained. The model was used to distinguish between asthmatic patients and healthy controls based 
on the sample-by-taxon abundance matrix. The true positive fraction is the proportion of real positivesthat are cor-
rectly classified as positive; the false positive fraction is the proportion of false positivesthat are incorrectly classified 
as positive. The ROC curve summarizes the true positive and false positive rates and the AUC reflects the classifier’s 
ability to correctly differentiate between two classes. Table S2: Final selected OTUs. P-values characterize differences 
in the relative abundances between asthmatic and healthy subjects. Figure S4. Microbial abundance by Asthma 
and Age Subgroup. Genus composition was compared among the asthmatic pediatrics, asthmatic adults, healthy 
pediatrics and healthy adults using the 20 most abundant OTUs. The relative abundance is expressed as the mean 
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value for each group. Moraxella is distinctly more abundant in pediatric asthmatics than in any other group, whereas 
Veillonella, Prevotella, and Neisseria were less enriched on asthmatic pediatrics. Figure S5. Overview of alpha and 
beta diversity analysis of the respiratory microbiota in asthmatic patients and healthy controls by Age Subgroup.The 
graph depicts the alpha diversity boxplots for Chao1, ACE, Shannon and Simpson diversity indices distinguishing 
asthmatic patients and healthy control subjects by Age Subgroup. Plotted are interquartile rangesand lines in the 
middle of the boxes are medians. Statistical analysis performed with paired Wilcoxon tests reveals significantly lower 
microbial diversity in asthmatic pediatrics.-The plots depict Principal Coordinates Analysis based on the Bray-Curtis 
index between the above-mentioned groups in 2D-space. Some clusters of asthmatic pediatrics can be observed on 
high values of PCoA1. Moreover, adult healthy subjects were generally observed to have negative loadings on each 
PCoA. Statistical analysis was performed with Analysis of Similarities, and p-values were significant.
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