
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Aach et al. Journal of Big Data (2023) 10:96
https://doi.org/10.1186/s40537-023-00765-w

Journal of Big Data

Large scale performance analysis
of distributed deep learning frameworks
for convolutional neural networks
Marcel Aach1,2*, Eray Inanc1, Rakesh Sarma1, Morris Riedel1,2 and Andreas Lintermann1

Abstract

Continuously increasing data volumes from multiple sources, such as simulation and
experimental measurements, demand efficient algorithms for an analysis within a
realistic timeframe. Deep learning models have proven to be capable of understand-
ing and analyzing large quantities of data with high accuracy. However, training them
on massive datasets remains a challenge and requires distributed learning exploiting
High-Performance Computing systems. This study presents a comprehensive analysis
and comparison of three well-established distributed deep learning frameworks—
Horovod, DeepSpeed, and Distributed Data Parallel by PyTorch—with a focus on their
runtime performance and scalability. Additionally, the performance of two data loaders,
the native PyTorch data loader and the DALI data loader by NVIDIA, is investigated. To
evaluate these frameworks and data loaders, three standard ResNet architectures with
50, 101, and 152 layers are tested using the ImageNet dataset. The impact of different
learning rate schedulers on validation accuracy is also assessed. The novel contribution
lies in the detailed analysis and comparison of these frameworks and data loaders on
the state-of-the-art Jülich Wizard for European Leadership Science (JUWELS) Booster
system at the Jülich Supercomputing Centre, using up to 1024 A100 NVIDIA GPUs
in parallel. Findings show that the DALI data loader significantly reduces the overall
runtime of ResNet50 from more than 12 h on 4 GPUs to less than 200 s on 1024 GPUs.
The outcomes of this work highlight the potential impact of distributed deep learning
using efficient tools on accelerating scientific discoveries and data-driven applications.

Keywords: High-Performance Computing, Distributed deep learning, Performance
analysis, Convolutional neural network, ImageNet

*Correspondence:
m.aach@fz-juelich.de

1 Jülich Supercomputing Centre,
Forschungszentrum Jülich
GmbH, Wilhelm-Johnen-Straße,
52428 Jülich, Germany
2 School of Engineering
and Natural Sciences, University
of Iceland, Reikjavik, Iceland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00765-w&domain=pdf

Page 2 of 23Aach et al. Journal of Big Data (2023) 10:96

Graphical Abstract

Introduction
In the past few years, deep neural networks have become powerful tools to solve prob-
lems from different scientific disciplines. Especially in the field of image recognition, sig-
nificant advancements have been made using Convolutional Neural Networks (CNNs)
and Transformers [1, 2]. As the size of the datasets used for training and the model sizes
continuously increase, their training becomes more and more computationally expen-
sive. Therefore, it is of utmost importance to find suitable and efficient methods to
reduce the training runtime by as much as possible.

Using High-Performance Computing (HPC) systems, it is possible to accelerate the
training and model generation processes, i.e., by intelligently subdividing the problem
and using massively parallel hardware for efficiently distributing the computational load.
The two main strategies for distributing the training of neural networks to different work-
ers, where a worker is usually a Graphics Processing Unit (GPU), are model and data par-
allelism [3]. The former method splits the neural network and distributes it across the
workers. In contrast, the latter splits the input data and the network is trained with differ-
ent batches per worker. At the end of an epoch, all gradients are merged to apply the same
update to the network’s weights on every worker. The Message Passing Interface (MPI) is
frequently used to communicate the parameters between the workers in either a synchro-
nous or asynchronous way. In the synchronous case, an AllReduce operation is exe-
cuted for gradient reduction, while in the asynchronous case, a single central parameter
server receives all gradient updates from the workers and performs the optimization step.
For the asynchronous case, the overall performance is limited by the network bandwidth
of the parameter server and depends on the amount of data to transmit per worker. The
usage of alternative strategies such as asynchronous ring communications or employing
MPI can alleviate this bottleneck. In general, with an increasing number of computational

Page 3 of 23Aach et al. Journal of Big Data (2023) 10:96

nodes, the communication to share the gradients becomes the main bottleneck. To mini-
mize this communication overhead, the number of gradient reductions has to be reduced.

The focus of this study is on data parallelism, as it offers benefits for neural networks
of any size when trained on large datasets, whereas model parallelism is primarily
advantageous for network architectures that do not fit onto a single GPU. Consequently,
data parallelism holds an advantage in its ability to cater to a wider range of neural net-
work architectures, whereas model parallelism is better suited for handling larger neural
networks that face memory limitations. The standard approach to scale Deep Learning
(DL) trainings on large HPC systems is to increase the global batch size BS, which may,
however, lead to insufficient validation accuracies [4]. To retain a sufficient accuracy,
modifications to the training process are frequently necessary, which may also affect the
parallel performance. It is furthermore challenging to apply the right framework for a
specific learning task that involves large input data or models, and at the same time, ben-
efit from the computational power of HPC systems.

The motivation of this study is to provide guidance in this direction. To this end, the
performance in terms of accuracy and scalability of the parallel frameworks—Horo-
vod [5], PyTorch-Distributed Data Parallel (PyTorch-DDP) [6] and DeepSpeed [7]
are evaluated on the European HPC system Jülich Wizard for European Leadership
Science (JUWELS) [8] Booster module (place 12 in Top500 [9] as of 08/2022). These
three frameworks are easily accessible as they are open-source and have gained high
popularity in recent years. Their analysis supports the research community to decide
on a framework. The benchmarks are performed using the popular ImageNet data-
set [10] and three residual neural networks (ResNets) with 50, 101, and 152 layers [1]
to enable generic comparison with established benchmark studies.

The main contributions of this study are as follows:

• A comprehensive scalability analysis and comparison of training ResNet50,
ResNet101, and ResNet152 on ImageNet with Horovod, PyTorch-DDP, and Deep-
Speed, using the DALI and native PyTorch data loaders ranging on up to 1024
GPUs is performed. The results demonstrate that in combination with the native
PyTorch data loader, DeepSpeed shows the best performance on a small number of
GPUs, while Horovod and PyTorch-DDP outperform it when using a larger num-
ber of GPUs. However, in comparison, the use of DALI leads to higher throughput
and improves scalability for all ResNet architectures.

• An assessment of the influence of step-wise, cosine, and exponential learning
rate annealing on the validation accuracy for different batch sizes ranging from
BS = 256 to 65,536 is performed. These findings reveal that cosine annealing
delivers superior performance on small and medium batch sizes, while exponen-
tial annealing achieves the highest accuracy for the largest batch size.

The paper is structured as follows. The established distributed DL frameworks as well
as the challenges that arise when scaling the training to large HPC systems are dis-
cussed in "Related work" section. In "Overview of the benchmark setup" section, an

Page 4 of 23Aach et al. Journal of Big Data (2023) 10:96

overview of the experimental setup is given. Subsequently, "Benchmark results" sec-
tion presents the main benchmark results from a computational perspective. Finally,
"Summary, conclusion, and outlook" section summarizes the findings, draws conclu-
sions, and gives an outlook to future work.

Related work
The ImageNet dataset, originally introduced for the ImageNet Large Scale Visual Rec-
ognition Challenge (ILSVRC), features 1,281,167 training images and 50,000 validation
images divided into 1000 object classes [10]. This dataset is commonly used in the litera-
ture as an important benchmark to test algorithms, where their performance is meas-
ured through validation accuracy V [11], which is computed from correctly classified
validation images.

AlexNet [12] (a CNN) was one of the first machine learning models to achieve high
accuracy on the ImageNet dataset in the ILSVRC 2012. Since then, multiple improve-
ments have been made to the original network structure [13], yielding the current
ResNet architecture [1] with a varying amount of convolutional layers. Although Trans-
former architectures [14] have recently been shown to achieve even better results in
image classification tasks, CNNs are still widely used due to lower training duration, low
energy usage, and their good scalability [15, 16].

Many distributed DL frameworks exist for scaling especially neural network models
to multiple workers in an HPC environment. A literature review is given in [17] and an
in-depth performance analysis is presented in [3]. One of the first frameworks to scale to
a large number of computational nodes equipped with Central Processing Units (CPUs)
was DistBelief by Google [18] using an asynchronous Stochastic Gradient Descent (SGD)
method. Others, such as Petuum [19] or Project Adam [20] have improved this idea, e.g.,
by introducing dynamic scheduling. With FireCaffe [21], the focus shifted towards using
GPU clusters and synchronous gradient reduction methods.

The most common DL libraries such as TensorFlow [22] from Google, PyTorch from
Facebook, and MXNet [23] from Apache, have their unique distributed training strate-
gies. Other frameworks such as HeAT [24] take a more general approach to distributed
machine learning by providing a scalable NumPy-like [25] Application Programming
Interface (API) to enable all kinds of data analytics, not being limited only to neural net-
works. While all of these frameworks mainly focus on enabling data parallelism, more
recently Microsoft introduced the ZeRO [26] and DeepSpeed [7] frameworks that can
train models with billions of parameters through model parallelism. A small scale study
(up to four GPUs) of the performance of TensorFlow and FireCaffe on different HPC sys-
tems is available in [27]. An overview of the frameworks and their parallelism and com-
munication strategies are shown in Table 1.

The present work solely focuses on synchronous communication and data-par-
allel functionality of the commonly used frameworks. Horovod, PyTorch-DDP, and
DeepSpeed are all compatible with the HPC system’s job scheduler SLURM [28] and
the InfiniBand communication pattern by default, while the distributed versions of
MXNet and TensorFlow are not.

Page 5 of 23Aach et al. Journal of Big Data (2023) 10:96

In the literature, various tests using a ResNet50 on the ImageNet dataset exist. In
the original ResNet paper [1], it takes 29 h to train the network for 90 epochs on eight
NVIDIA Tesla P100 GPUs with a batch size of BS = 256 . Subsequently, the train-
ing time is reduced to 1 h on 256 NVIDIA Tesla P100 GPUs [4]. Finally, in [29], a
training time of only 74 s on 2048 NVIDIA Tesla V100 GPUs is achieved. The cur-
rent benchmark record is 28.8 s as of 10/2022 [30], where TPUs have been used
instead of GPUs. To train a ResNet50 in such a short time, the authors increase the
batch size to BS = 8192 and BS = 81,920 . A large BS value, however, usually leads to
a reduction in generalization performance. To prevent this, several hyperparameter
modifications are applied in [29] to reach a V comparable to that of [1]. Therefore, the
learning rate LR is scaled linearly with respect to the number of workers. This is moti-
vated by the fact that with fewer weight updates, the learning rate has to be increased
to achieve similar gradient adjustments compared to using a small learning rate with
more frequent gradient updates. However, this linear scaling rule does not apply to
all cases, i.e., during the start of the training, where a lot of parameters are subject to
changes, a large learning rate may prohibit the optimizer from converging. Therefore,
a warm-up technique is used that slowly increases the learning rate during the first
five epochs [31]. Another technique reported to improve the accuracy when train-
ing with a large BS is label-smoothing [32], which is a regularization method adapted
to classification models. Using larger ResNet architectures, such as the ResNet101 or
ResNet152, leads to slightly improved V values [1].

In this work, the learning rate warm-up, learning rate scaling, and the label-smooth-
ing techniques are used to stabilize the training with the default SGD optimizer with

Page 6 of 23Aach et al. Journal of Big Data (2023) 10:96

relatively large BS values. Additionally, three different learning rate schedules are
explored and their performance in terms of V is analyzed.

Overview of the benchmark setup
This section gives an overview of the main frameworks used in this study, i.e., Horovod
is introduced in "Horovod" section, PyTorch in "PyTorch-distributed data parallel" sec-
tion, DeepSpeed in "DeepSpeed" section, and the data loaders in "Data loaders and data-
set compression" section. Furthermore, their communication operations are presented
and examples of how to include them into actual Python code are provided. General
issues that arise when scaling to a large amount of GPUs are addressed in "GPU scaling
issues" section and the different ResNet architectures are introduced in "Residual neural
networks" section. Three different learning rate scheduling methods with the potential
of increasing the accuracy of the training are introduced in "Learning rate scheduling"
section. The hardware and software configuration of the supercomputer used for the
benchmark tests is presented in "JUWELS HPC system and software stack" section.

Horovod

Horovod is an open-source distributed DL library originally developed by Uber for Ten-
sorFlow [5]. It is also supported as a backend library in the most common DL frame-
works such as PyTorch and Apache MXNet. Minimal code changes are required to
integrate Horovod into these DL frameworks. Code snippet 1 gives an example of how
to integrate Horovod with PyTorch.

The work by Pumma et al. [33] provides an overview and an analysis of the commu-
nication patterns in Horovod. It is one of the first libraries to use a decentralized Ring
AllReduce approach [34] to compute the gradient reduction instead of a single param-
eter server receiving all the updates, cf. "Introduction" section. It relies on low-level
communication libraries such as MPI, the NVIDIA Collective Communications Library
(NCCL) [35], or Facebook Gloo [36]. It is observed that the NCCL AllReduce yields
superior performance on NVIDIA GPUs [6].

Table 1 Overview of distributed DL frameworks, adapted from [6, 17]

Bounded asynchronous is a hybrid of synchronous and asynchronous communication

Framework Parallelism Communication

DistBelief [18] Model + Data Asynchronous

FireCaffe [21] Data Synchronous

Horovod [5] Model + Data Synchronous

MXNet [23] Model + Data Bounded Asynchronous

Petuum [19] Model + Data Bounded Asynchronous

TensorFlow [22] model + Data Bounded Asynchronous

PyTorch-DDP [6] Model + Data Synchronous

DeepSpeed [7] Model + Data Synchronous

Page 7 of 23Aach et al. Journal of Big Data (2023) 10:96

On a local worker level, the communication operations in Horovod are asynchronously
handled by a separate background thread. This thread repeatedly checks for commu-
nication requests and performs the corresponding data transfers. Since these transfers
may be requested asynchronously, the order of execution per worker may also be dif-
ferent. However, Horovod uses collective communication directives from other libraries
and hence has to execute a consensus protocol to ensure consistency (in terms of order)
across all workers. The process is summarized here:

 (i) One global background thread receives all the transfer requests from the local
background threads.

 (ii) The global background thread puts the requests in the correct order and sends the
list back to the local instances.

 (iii) Each local thread combines its local data and carries out the data exchange with
the other workers via AllReduce.

This back and forth communication creates overhead that can limit the scalabilty of the
framework.

In Horovod, the computations and communications are coupled with the ability to
batch small AllReduce operations. This exploitation of batching communication
operations is known as tensor fusion [5]. With this operation, the smaller data volumes
are transferred across different workers by locally fusing the data that are ready to be
reduced. Hence, fewer AllReduce operations are required. In large neural networks
with large number of parameters, this operation is expected to yield huge parallel per-
formance gains.

PyTorch‑distributed data parallel

PyTorch is a machine learning framework primarily developed by Facebook AI Research.
The PyTorch-DDP module features a built-in way to parallelize the training of neural
networks across multiple workers, e.g, GPUs. Code snippet 2 shows an example of how
DDP in PyTorch is used. Similar to Horovod, the PyTorch-DDP library uses an All-
Reduce paradigm (with the communication libraries NCCL, Gloo, or MPI) for updating
the gradients used in deep neural networks. To trigger the communication operation, a
custom ‘hook’ is registered in the internal automatic differentiation engine that is inte-
grated into the backward pass operation of deep neural networks [6]. A separate code for
managing the communication is hence not required.

Analogous to Horovod’s tensor fusion operation, PyTorch-DDP features gradient
bucketing, where instead of an immediate AllReduce operation the algorithm waits
for a few processor cycles once a batch of gradients is complete, and buckets (or ‘fuses’
in the sense of Horovod) multiple gradient parameters into a single parallel operation.
Hence, the computation and communication are overlapped, thus skipping frequent gra-
dient synchronization. A drawback of this method is a possible mismatch in the All-
Reduce operation if the reduction order is not the same across all processes—resulting
in an incorrect reduction or data inconsistencies. This issue is addressed by bucketing

Page 8 of 23Aach et al. Journal of Big Data (2023) 10:96

the gradients in the reversed order obtained during the forward pass operation. This is
motivated by the fact that the last layers of a network are likely the first ones to finish
computation during the backward pass. Another issue is the skipped bucketed gradients
that never enter the AllReduce operation. PyTorch-DDP handles this issue by a par-
ticipation algorithm, which checks the output tensors during the forward pass to find all
non-participated parameters (i.e., based on gradients that have not been updated) in the
current iteration to be included in the next iteration.

DeepSpeed

The focus of DeepSpeed developed by Microsoft Research is on training large language
models. These models usually feature several billion parameters and are trained on data-
sets from the natural language domain, which are significantly larger than most com-
puter vision datasets. The main issue with these large language models is their massive
memory footprint, a problem that is addressed with the ZeRO optimizer as part of Deep-
Speed. This parallel optimizer eliminates memory redundancies by not only distributing
the training data across workers but also the optimizer, gradient, and (if required) model
parameters across workers. In contrast to the default data-parallel approach, the model
is, therefore not necessarily replicated on each worker. Still, after each training step, an
AllReduce communication step is necessary to ensure consistency. This is performed
in a two-step process: first, different parts of the data are distributed to different workers
with a ReduceScatter command, then each worker gathers the different chunks of
data with an AllGather operation [26]. Code snippet 3 shows the integration of Deep-
Speed within PyTorch, which is currently the only supported DL backend.

Page 9 of 23Aach et al. Journal of Big Data (2023) 10:96

Data loaders and dataset compression

Two types of data loaders and corresponding dataset compressions are compared in this
work. One of the data loaders is the native PyTorch data loader, which uses the raw Ima-
geNet data in the JPG format. This data loader only supports raw image data and
performs all pre-processing steps on the CPUs. The other data loader is the NVIDIA
Data Loading Library (DALI) [37], where a compressed version (TFRecord) of the Ima-
geNet dataset is used. DALI is an open-source framework to accelerate the data-loading
process in DL applications by involving the GPU, following a pipeline-based approach.
Usually, the GPU runs computations much faster compared to the data-loading speed
of the CPU. The idea of DALI is to prevent the GPU from starving by moving the data-
loading process to the GPU at an early stage. The GPU then performs the data pre-pro-
cessing, such as image resizing, cropping, and normalization on the fly. By pipe-lining
these operations and executing them directly on the GPU, DALI minimizes the amount
of data that needs to be transferred between the CPU and GPU, which reduces the over-
head associated with these operations. DALI supports multiple data formats and with its
unified interface, it is easy to integrate into all common DL frameworks. With this seam-
less integration developers can exploit the full potential of their GPU-based systems
without having to modify their existing workflows significantly or switch between differ-
ent data loading libraries. While the main focus of DALI is the GPU-based approach, it
also offers the possibility to use the CPU for all steps of the pipeline. In this case also the
pre-processing is performed on the CPU. Initial benchmarks show a speed-up between
20-40% in throughput compared to the original PyTorch data loader [38].

It should be noted that in terms of actual disk space, the difference between the com-
pressed TFRecord version of the ImageNet dataset (144 GB) and the raw JPG

Page 10 of 23Aach et al. Journal of Big Data (2023) 10:96

data (154 GB) is marginal. However, the file structure of the TFRecord dataset is
much better suited for data loading in comparison to the over one million single image
files in the raw dataset.

GPU scaling issues

GPU scaling in deep learning presents several challenges, including communication
overhead, load balancing, and memory limitations. Communication overhead arises due
to the constant synchronization and information exchange required between multiple
GPUs during training. This overhead can reduce efficiency and performance as it grows
with the number of GPUs. Solutions include using high-bandwidth, low-latency inter-
connects, and implementing efficient communication algorithms such as ring-based
AllReduce methods [39, 40]. Load balancing is crucial for ensuring an even distribu-
tion of computational workload across all GPUs, maximizing resource utilization. An
uneven workload distribution can lead to idle GPUs, wasting resources and increasing
runtime. Dynamic load balancing algorithms and data or model parallelism techniques
can help distribute tasks and data efficiently across multiple GPUs. Memory limitations
pose a challenge when large models (or datasets) exceed a single GPU memory capac-
ity, causing out-of-memory errors or forcing smaller batch sizes, which can negatively
impact performance and convergence.

Residual neural networks

A prevalent challenge when training deep neural networks is the vanishing gradi-
ent problem, which leads to accuracy degradation [41]. ResNet architectures address
this issue by introducing “skip-connections” that enable the training of deep networks
without compromising accuracy. For larger vision datasets, ResNet50, ResNet101, and
ResNet152 are the most widely adopted models. All models consist of one input layer
and one fully-connected output layer but vary in the number of intermediate convolu-
tional layers (48 vs. 98 vs. 150), see Fig. 1 for a visualization of the architecture. As a
result, 3.8× 109 floating-point operations per forward pass are needed for a ResNet50,
7.6× 109 for a ResNet101, and 11.3× 109 for a ResNet152. Although having more lay-
ers typically allows for the representation of more complex phenomena, it is essential to

3
×

3
co
nv

3
×

3
co
nv

...

3
×

3
co
nv

3
×

3
co
nv

7
×

7
co
nv

im
ag
e

fc
10

00

Fig. 1 Standard ResNet architecture with one input layer (in orange), a varying number convolutional layers
(in purple) and a fully-connected output layer (in white). Figure adapted from [1]

Page 11 of 23Aach et al. Journal of Big Data (2023) 10:96

consider the trade-off between model complexity and training efficiency, as an increased
number of floating-point operations leads to longer runtimes.

Learning rate scheduling

A known problem in large-scale distributed DL is the major drop in the validation
accuracy V when using a large BS [4], regardless of the used framework, data loader,
or optimizations (e.g., label-smoothing). A larger BS yields fewer optimization steps,
thus compromising the accuracy of the optimizer. This issue is one of the key chal-
lenges in distributed DL. To avoid divergence of the training process for BS ≥ 32k
on ImageNet, further optimizations, such as LR scheduling, are necessary. The most
common approach for a LR schedule on the ImageNet dataset is a stepwise annealing
method [1]. This schedule reduces the LR in regular intervals over time by an order of
magnitude, i.e., in the ImageNet training, these intervals are set at epoch numbers 30,
60, and 80.

Since the LR schedule plays an important role in the performance of a model, different
approaches exist in the literature. The cosine-annealing schedule [42] is supported by
PyTorch and uses the cosine function for smoother LR annealing over time. In this case,
the learning rate LRt at the current epoch t is defined by:

where LRmin and LRmax are the minimum and maximum values of the learning rate, and
tmax is the total number of epochs used in the training. This decays LR gradually at every
epoch, compared to the sharp drops of the step-wise annealing. Another approach to LR
scheduling is the exponential decay schedule. Here, the LR starts with a large value and
is then decreased rapidly in the beginning and gradually afterwards in an exponential
manner. The learning rate LRt at the current epoch t is given by:

where the decay factor is usually set to γ = 0.95 . The comparison in Fig. 8a shows that
this scheduling method decreases the learning rate at similar orders of magnitude as the
step-wise scheduler but in a smoother way.

JUWELS HPC system and software stack

The benchmarks presented in "Benchmark results" section are performed on the JUWELS
HPC system. This system has a Modular Supercomputing Architecture (MSA) [43] and
consists of a cluster and a booster module. The experiments use the GPU-based JUWELS
Booster module, which consists of 936 compute nodes, each equipped with two AMD
EPYC Rome 7402 CPU with 2x24 cores, clocked at 2.8 GHz, 512 GB Dynamic Random
Access Memory (DRAM), and four NVIDIA A100 GPU with 40 GB High Bandwidth
Memory (HBM). The GPUs communications in a compute node are performed via
NVLINK [44]. The interconnect between compute nodes is a Mellanox InfiniBand HDR
network with DragonFly+ topology. Each compute node has four HDR host channel

(1)LRt = LRmin +
1

2
(LRmax − LRmin)

[

1+ cos

(

t

tmax

π

)]

,

(2)LRt = LRmax ∗ γ
t
,

Page 12 of 23Aach et al. Journal of Big Data (2023) 10:96

adapters. A Peripheral Component Inter-Connect Express (PCIe) Gen4 bus connects
the components. In total, the JUWELS Booster is equipped with 3,744 GPUs and has 73
PFlops peak performance. Figure 2 shows the schematic of a single node.

The compressed and uncompressed ImageNet datasets are both stored on the SCRATCH
partition of the JUWELS General Parallel File System [45]. This partition is optimized for
the storage of large data and features a high Input/Output (I/O) bandwidth.

For running the experiments, the following software versions are deployed, which are
available through JUWELS’ EasyBuild [46] software system:

• GCC 11.2.0

• OpenMPI 4.1.2

• Python 3.9.6

• CUDA 11.5

• PyTorch 1.11.0

• Horovod 0.24.3

• Deepspeed 0.6.3

• DALI 1.12.0 (virtual environment)

The number of CPU threads per data loader instance is set to 8.

Benchmark results
This section evaluates the performance of the three frameworks Horovod, PyTorch-DDP,
and DeepSpeed with the native PyTorch and the DALI data loaders on the JUWELS
Booster. The runtime T of training a ResNet50, a ResNet101, and a ResNet152 on the
ImageNet dataset for 90 epochs with a batch size of BS = 64 per GPU is measured and
analyzed in "Efficiency" section. Additionally, the effect of three different learning rate
schedulers on V is explored in "Accuracy" section.

Efficiency

The results for the ResNet50 training in terms of data throughput DT, measured in
images i per second over the number of GPUs, are shown in Fig. 3. Overall, the DALI

DRAM

DRAM

AMD Epyc
Rome

AMD Epyc
Rome

PCIe Gen4 Switch

PCIe Gen4 Switch

A100 A100

A100 A100

HDR HCA

HDR HCA

HDR HCA

HDR HCA

2x16

2x16

x16 x16

x16 x16

x16

x16

x16

x16

Fig. 2 JUWELS Booster node schematic. Two AMD Epyc Rome CPUs are connected to four NVIDIA A100 GPU
and the HDR HCAs via two PCIe Gen4 switches. The GPUs communicate via NVLINK

Page 13 of 23Aach et al. Journal of Big Data (2023) 10:96

data loader (Fig. 3a) achieves a higher throughput of images compared to the native
PyTorch data loader (Fig. 3b), and this is observed to be independent of the distributed
DL framework. For the native data loader, the three frameworks show similar perfor-
mances up to 64 GPUs. For a smaller number of GPUs, DeepSpeed shows the highest
DT, but performance drops for a larger number of GPUs, where PyTorch-DDP performs
the best. In summary, for all three frameworks, it is evident that the native data loader
cannot match the performance of the DALI data loader.

For a consistent scalability comparison, the parallel efficiency metric EG is calculated as

(3)EG =
SG

G
,

4 8 16 32 64 128 256 512 1024
103

104

105

no. GPUs G

D
T

[i
/s
]

PyTorch-DDP-DALI-CPU
PyTorch-DDP-DALI-GPU
Horovod-DALI-CPU
Horovod-DALI-GPU

(a) Throughput of Horovod and PyTorch with the DALI data loader CPU and
GPU version on the compressed ImageNet dataset.

4 8 16 32 64 128 256 512
103

104

105

no. GPUs G

D
T

[i
/s
]

PyTorch-DDP-native
Horovod-native
Deepspeed native
Horovod-DALI-CPU

(b) Throughput of Horovod, PyTorch-DDP, and DeepSpeed with the native Py-
Torch data loader on raw ImageNet dataset, including comparison with Horovod-
DALI-CPU throughput. The largest configuration only features 512 GPUs in this
case as no significant additional speed-up is expected on larger configurations.

Fig. 3 Throughput of different frameworks and DALI (a) and native (b) data loader for the ResNet50 case,
averaged over three experimental runs. The variance between runs is small (in general < 5%) and therefore
not shown

Page 14 of 23Aach et al. Journal of Big Data (2023) 10:96

where S is the speed-up and G is the number of workers. The speed-up SG is computed
as

with reference runtime T4 , i.e., using four GPUs (one node on the JUWELS Booster).
Note that EG of (or close to) unity is the ideal scenario with perfect scaling. The quan-
tity EG is plotted in Fig. 4 for the DALI data loader over the number of GPUs. Note that

(4)SG =
T4

TG

,

4 8 16 32 64 128 256 512 1024
0.6

0.7

0.8

0.9

1

no. GPUs G

E
G

PyTorch-DDP-DALI-CPU
Horovod-DALI-CPU
ideal

(a) Data loading and image pre-processing handled by the CPUs

4 8 16 32 64 128 256 512 1024
0.6

0.7

0.8

0.9

1

no. GPUs G

E
G

PyTorch-DDP-DALI-GPU
Horovod-DALI-GPU
ideal

(b) Data loading and image pre-processing handled by the GPUs
Fig. 4 Parallel efficiency of Horovod and PyTorch-DDP on up to 1024 GPUs with the DALI data loader for
CPU- (a) and GPU-based (b) pre-processing with compressed ImageNet dataset for the ResNet50 case,
averaged over three runs. Black line denotes the ideal case. The variance between runs is small (in general
< 5%) and therefore not shown

Page 15 of 23Aach et al. Journal of Big Data (2023) 10:96

the DeepSpeed framework cannot use the DALI data loader. It is clear that the tested
frameworks show similar scaling performances. Independent of the hardware accelera-
tion (pre-processing on CPU in Fig. 4a or GPU in Fig. 4b) and the framework, the EG
value remains above 0.65 up to 1024 GPUs. The training with PyTorch-DDP using the
CPU for data input performs slightly better than its Horovod counterpart on 256 and
512 GPUs. With 1024 GPUs, the trainings using CPU for data input achieve a higher
EG value of 0.76 compared to the ones using GPU, which is at EG = 0.68 . These findings
show data loading with CPUs to be favorable for large-scale trainings. An analysis of the
average CPU usages shows an occupancy of less than 40% across all configurations. It is
assumed that the computationally strong host CPUs make up for any performance gains
achieved by transferring the image pre-processing onto the GPUs. For hardware setups
with less powerful host CPUs, using the GPU-based DALI version could still improve
performance.

Figure 5 presents the parallel efficiency results for the native PyTorch data loader.
When compared to the scalability of the DALI data loader (see Fig. 4), the scaling per-
formance of the tested frameworks is considerably worse. The EG values of the train-
ing with PyTorch-DDP using the native data loader (denoted as PyTorch-DDP-native in
Fig. 5) drops below 0.44 already with 256 GPUs, whereas Horovod and DeepSpeed have
EG values of 0.50 and 0.33, respectively on 128 GPUs. With 512 GPUs, all of the frame-
works achieve an EG value of less than 0.24, indicating the limitations of the data loader
on parallelization. The superior performance of the PyTorch-DDP-native data loader
could be due to its better compatibility with the PyTorch-DDP framework.

Fig. 6 shows the scaling performance of three ResNet architectures using the DALI
data loader and PyTorch-DDP framework. The ResNet50, 101, and 152 model show sim-
ilar EG values up to 16 GPUs. On larger configurations with more GPUs, the ResNet152
achieves the highest EG values, reaching 0.81 on 1024 GPUs. When more than 512 GPUs
are utilized, the ResNet50 achieves the lowest EG values. This behavior is expected, as

4 8 16 32 64 128 256 512

0.2

0.4

0.6

0.8

1

no. GPUs G

E
G

PyTorch-DDP-native
Horovod-native
Deepspeed-native
ideal

Fig. 5 Parallel efficiency of Horovod, PyTorch-DDP and DeepSpeed on up to 512 GPUs with the native PyTorch
data loader and raw ImageNet dataset for the ResNet50 case, averaged over three runs. Black line denotes
the ideal case. The variance between runs is small (in general < 5%) and therefore not shown

Page 16 of 23Aach et al. Journal of Big Data (2023) 10:96

a larger neural network means that more computation is necessary, which improves
the computation to communication ratio and therefore also the scaling behavior. Nev-
ertheless, the superiority of the DALI data loader over the native data loader can also
be observed for the training with ResNet101 (see Fig. 7). On configurations with more
than 32 GPUs, the DALI data loader clearly outperforms the native one in terms of scal-
ing performance. Moreover, it is evident that PyTorch-DDP shows slightly better scaling
performance than the Horovod framework (compare blue with green lines in Fig. 7).

For further verification of the results and a comparison of the DALI and native data
loader, the NSys profiling tool [47] is used to analyze the amount of communication,

4 8 16 32 64 128 256 512 1024

0.75

0.8

0.85

0.9

0.95

1

no. GPUs G

E
G

ResNet50
ResNet101
ResNet152
ideal

Fig. 6 Parallel efficiency comparison of PyTorch-DDP on up to 1024 GPUs for different ResNets with DALI
data loader (CPU-based) and compressed ImageNet dataset, averaged over three runs. The black line denotes
the ideal case. The variance between runs is small (in general < 5%) and therefore not shown

4 8 16 32 64 128 256 512 1024

0.4

0.6

0.8

1

no. GPUs G

E
G

PyTorch-DDP-DALI
PyTorch-DDP-native
Horovod-DALI
Horovod-native
ideal

Fig. 7 Parallel efficiency of Horovod and PyTorch-DDP on up to 1024 GPUs training a ResNet101 with the
DALI data loader and compressed ImageNet dataset and native PyTorch data loader and uncompressed
ImageNet dataset, averaged over three runs. Black line denotes the ideal case. The variance between runs is
small (in general < 5%) and therefore not shown

Page 17 of 23Aach et al. Journal of Big Data (2023) 10:96

computation, and data loading that takes place during the training runs of all three
ResNet architectures, where the results are shown in Table 2 in terms of three quantities.
These are: (i) the runtime share by the Compute Unified Device Architecture (CUDA)
kernels to perform ‘communication’-related NCCL tasks (named communication), (ii)
the runtime share to perform ‘computation’-related tasks with the cuDNN library [48]
(named computation), such as the time for the calculation of the convolutional layers,
and (iii) the runtime share to execute ‘input/output’-related tasks, such as data loading
(named I/O).

For both types of data loaders, the time percentage spent on communication
increases with the number of workers, while the efforts for the computation and
data loading processes reduce. This behavior is expected when scaling up tasks that
require frequent communication on a cluster while keeping the size of the dataset

Table 2 Profiling CUDA kernel time in percent spent on communication operations via
AllReduce, computations with the cuDNN library, and data loading functions

The first 10 epochs of the training process are profiled with the NSys Profiler (first five epochs for four GPUs due to time
limits of the profiler)

No. GPUs PyTorch-DDP DALI PyTorch-DDP native

AllReduce [%]
(Communication)

data[%]
(I/O)

cuDNN[%]
(Computation)

AllReduce [%]
(Communication)

data[%]
(I/O)

cuDNN[%]
(Computation)

(a) Training of ResNet50 on ImageNet

4 15.40 22.00 32.50 22.40 21.00 30.80

8 19.00 21.40 31.75 23.95 20.05 29.20

16 21.00 20.95 30.70 27.15 18.83 27.35

32 27.09 18.98 28.14 31.30 17.26 25.11

64 30.87 17.76 26.35 32.75 16.30 23.55

128 33.61 17.03 24.99 49.48 11.77 17.33

256 37.08 15.78 23.26 76.77 5.06 7.14

512 43.48 13.57 20.02 82.61 3.66 5.52

1024 46.18 11.56 17.31 – – –

(b) Training of ResNet101 on ImageNet

4 13.30 23.00 46.00 28.65 22.50 38.12

8 20.55 21.25 41.45 30.15 18.28 35.52

16 24.08 20.37 39.65 35.67 16.76 32.71

32 25.36 18.71 36.99 35.46 14.59 28.43

64 37.17 16.69 33.39 37.69 15.31 29.88

128 36.29 16.74 34.02 42.32 13.39 26.38

256 39.31 15.54 31.56 56.43 11.38 22.83

512 37.73 15.40 31.59 59.18 11.87 24.45

1204 49.18 11.87 24.45 – – –

(c) Training of ResNet152 on ImageNet

4 16.20 22.40 44.60 18.41 21.97 44.17

8 20.55 21.75 42.35 20.65 21.95 40.75

16 25.90 20.05 39.07 24.77 20.70 38.62

32 29.16 18.72 37.15 30.31 18.77 35.32

64 33.56 16.90 33.82 38.34 16.42 30.80

128 36.16 16.66 33.73 45.75 14.02 26.60

256 38.33 15.51 31.60 49.39 15.05 28.46

512 40.36 14.41 29.43 51.76 11.16 25.36

1024 43.21 13.08 26.99 – – –

Page 18 of 23Aach et al. Journal of Big Data (2023) 10:96

constant. For a smaller number of GPUs, the difference in time spent executing the
AllReduce commands is similar for the DALI and native data loader methods.
However, this difference increases rapidly with more workers. For example, in the
ResNet50 case with 512 GPUs, the native data loader spends 82.61% of its time on
communication, while the DALI data loader spends only 43.48% . A similar trend can
be observed for the trainings with ResNet101 and ResNet152, where the native data
loader spends 59.18 and 51.76% of its time on communication, compared to 37.73%
and 40.36 for the DALI data loader, respectively. This substantial discrepancy could
explain the poor scaling behavior of the native data loader. Regarding the computa-
tion time with the cuDNN library, it decreases for both data loaders as the num-
ber of GPUs increases, which is expected as the overall computational workload is
distributed across a larger number of GPUs. For all three ResNet cases, the DALI
data loader consistently exhibits higher computation percentages than the native
data loader, suggesting that it effectively utilizes GPU resources. As for data load-
ing, the time spent decreases as the number of GPUs increases for both data loaders.
Although the relative data loading time is comparable between the two data load-
ers, it is important to emphasize that the DALI data loader is much faster in abso-
lute timing. For example, in the ResNet152 case on 64 GPUs, the DALI data loader
is responsible for 16.9% of the total runtime which amounts to ≈ 25s in absolute
timing. For the native data loader case, the relative value is roughly the same with
16.42% of the total runtime, which, however, amounts to ≈ 47s in absolute timing.
As expected, when comparing the three ResNet models it is evident that the com-
munication overhead slightly reduces for smaller ResNet architectures, while the
computation time increases as the size of the ResNet grows. Due to the low scaling
performance of the native data loader, no evaluations on 1024 GPUs were performed
for this case.

Accuracy

To investigate the issue of lower accuracy with a larger BS value, the effect of differ-
ent learning rate schedules on the learning rate LR itself and V are explored in Fig. 8
for the training with ResNet50. The three methods deployed in this case are thestep-
wise, the cosine, and the exponential annealing methods, as described in "Learning
rate scheduling" section. Fig. 8b depicts the evaluation of V using the different learning
rate schedules over growing batch sizes. All three scheduling methods have similar
performances up to BS = 4k (corresponds to 64 GPUs) with the exponential sched-
uling method being slightly worse than the others. At BS = 8k (128 GPUs), the first
significant drop of V from ≈ 77% to 74% is observed. From BS = 16k (256 GPUs), the
quantity V drops consistently to lower values. For all three scheduling methods, there
is a sharp drop of V for BS = 32k and BS = 65k (512 and 1024 GPUs). The difference
in V is large for BS = 65k , where V ≈ 52% , V ≈ 41% , and V ≈ 31% for the exponen-
tial annealing, step-wise, and cosine annealing scheduling methods, respectively. It is
interesting to observe that the exponential scheduling method outperforms the cosine
annealing for BS = 32k and also the step-wise scheduling method for BS = 65k , even
though exponential scheduling starts with the worst V value even for BS = 256 . It is

Page 19 of 23Aach et al. Journal of Big Data (2023) 10:96

evident that none of the scheduling methods can avoid the drop in V for trainings with
large BS values, however, a training with the exponential learning rate schedule is the
most favorable for large BS. Figure 9 depicts the validation accuracy curves over the
number of epochs for an exemplary training of a ResNet50 with BS = 65k with the
three different learning rate schedules. While the learning curves show similar behav-
iour for the first 20 epochs, the exponential schedule outperforms the other two in the
following 70 epochs by large margin.

0 20 40 60 80

0

5

10

15

20

25

epoch

L
R

LR warm-up
LR step-wise
LR cosine
LR exponential

(a) Learning rate LR variation over epochs using different learning rate scheduling
methods including warm-up in first five epochs (on 1,024 GPUs).

256 512 1k 2k 4k 8k 16k 32k 65k

0.3

0.4

0.5

0.6

0.7

0.8

BS

V

LR step-wise
LR cosine annealing
LR exponential

(b) Validation accuracy V for different learning rate schedulers with increasing
batch size BS. Average over 3 runs.

Fig. 8 Analysis of different learning rate schedulers for ResNet50 training, showing learning rate over
epochs (a) and validation accuracy over batch size (b). Note the original learning rate LR of 0.025 is scaled
with the number of GPUs

Page 20 of 23Aach et al. Journal of Big Data (2023) 10:96

Summary, conclusion, and outlook
In this study, three distributed DL frameworks, i.e., PyTorch-DDP, Horovod, and Deep-
Speed were analyzed in combination with the DALI and native PyTorch data loader
on the JUWELS Booster module on up to 1024 GPUs in terms of data throughput,
the runtime, and the scaling performance. For this analysis, the ResNet50, ResNet101,
and ResNet152 architectures were trained on the ImageNet dataset. Furthermore, the
impact of the batch size on the validation accuracy and the effect of different learning
rate scheduling methods were investigated for training a ResNet50.

The superiority of the DALI data loader over the native framework-based data
loader in terms of scaling performance was evident. A parallel efficiency of over 0.85
on up to 256 GPUs and over 0.75 on 1024 GPUs for training ResNet50 was achieved.
This value was over 0.80 on 1024 GPUs for training ResNet101 and ResNet152. It can
be concluded that DALI is well suited to be used in large-scale distributed machine
learning setups, regardless of the underlying framework or size of the neural network.
Comparatively, the native PyTorch data loader could only achieve an efficiency of 0.45
for a training with 512 GPUs, hence, an even lower number of GPUs.

As the global batch size has to be increased with the number of GPUs, the good
scaling performance can only be reached with a large global batch size, leading to a
reduction in validation accuracy of the training. Even though no solution exists to
address this problem, this work has shown that some mitigation was possible through
choosing the right learning scheduling methods. An exponential learning rate sched-
uling method showed the best performance in terms of validation accuracy for a large
batch size of 65k on 1024 GPUs for training ResNet50, whereas for smaller batch sizes,
the cosine or step-wise annealing scheduling methods achieved better accuracies.

Overall, the total training time was reduced from ≈ 13 h on 4 GPUs to ≈ 200 s on
1024 GPUs for training ResNet50 (234 times faster) and ≈ 17 h to ≈ 300 s for the
Resnet152 case (204 times faster), respectively. This good scaling behavior proves the
combined power of distributed DL and HPC when using the right tools and meth-
ods. Such short training times enable the developers to focus more on code and

0 20 40 60 80

0

0.2

0.4

0.6

epoch

V

LR step-wise
LR cosine annealing
LR exponential

Fig. 9 Validation accuracy V over the number of epochs for a ResNet50 training with BS = 65k on 1024 GPUs
with different learning rate schedulers

Page 21 of 23Aach et al. Journal of Big Data (2023) 10:96

hyperparameter tuning, leading in the end to better models. In summary, research-
ers should scale their training with the usage of Horovod or PyTorch-DDP to as much
GPUs as possible, until the degradation of the accuracy sets in.

There exist other distributed DL frameworks that could be analyzed in terms of per-
formance on large HPC systems. Furthermore, on the hardware side, different pro-
cessor architectures that are tailored for machine learning, e.g., TPUs or Graphocore
IPUs [49], are emerging and will undoubtedly play a key role in distributed DL. In the
future, these developments will be further investigated.

The issue with the accuracy drop for large batch sizes also requires further atten-
tion. Other promising techniques apart from learning rate scheduling methods
include novel optimizers, e.g., NVLAMB [50]. A comprehensive hyperparameter tun-
ing routine, which includes other optimizer-related parameters, such as weight-decay
rate or momentum can also impact the performance.

While this work evaluated the data loaders and frameworks already at large scale,
further scaling tests are needed for even bigger systems, e.g., Exascale machines.
Therefore, larger datasets and more complex models will be required. Other model
architectures such as Autoencoders or Transformers have shown great success on
various tasks and hence might be a good choice.

Future directions of general big data research include developing more efficient and
adaptive distributed DL algorithms to handle heterogeneous data sources, reduce
storage and communication overheads in HPC systems, and perform energy effi-
ciency training of DL models on massive datasets.

Abbreviations
API Application Programming Interface
BS Batch Size
CNN Convolutional Neural Network
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DALI NVIDIA Data Loading Library
DL Deep Learning
DRAM Dynamic Random Access Memory
GPU Graphics Processing Unit
HPC High-Performance Computing
ILSVRC ImageNet Large Scale Visual Recognition Challenge
I/O Input/Output
IPU Intelligent Processing Unit
JUWELS Jülich Wizard for European Leadership Science (JUWELS)
LR Learning Rate
MPI Message Passing Interface
MSA Modular Supercomputing Architecture
NCCL NVIDIA Collective Communications Library
PCIe Peripheral Component Inter-Connect Express
ResNet Residual Neural Network
SGD Stochastic Gradient Descent
TPU Tensor Processing Unit
V Validation Accuracy

Acknowledgements
Not applicable.

Author contributions
MA: writing code and paper, running experiments and analysis, EI: contributions to code and analysis, review, RS:
contributions to code and analysis, review, MR: supervision, contribution to analysis, review, AL: supervision, funding,
contribution to analysis, review. All authors read and approved the final manuscript.

Page 22 of 23Aach et al. Journal of Big Data (2023) 10:96

Funding
Open Access funding enabled and organized by Projekt DEAL. The research leading to these results has been conducted
in the CoE RAISE project, which receives funding from the European Union’s Horizon 2020-Research and Innovation
Framework Programme H2020-INFRAEDI-2019-1 under Grant Agreement No. 951733. The authors gratefully acknowl-
edge the Partnership for Advanced Computing in Europe (PRACE) for funding this project by providing computing
time on the Supercomputer JUWELS [8] at Jülich Supercomputing Centre (JSC). Open Access publication funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 491111487.

Availability of data and materials
The code to reproduce the experiments is available to the public via https:// gitlab. jsc. fz- jueli ch. de/ CoE- RAISE/ FZJ/ resnet-
bench marks
The datasets generated and/or analysed during the current study are available in the ImageNet repository, https:// www.
image- net. org/ downl oad. php.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 3 November 2022 Accepted: 8 May 2023

References
 1. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2016;pp. 770–778. https:// doi. org/ 10. 1109/ CVPR. 2016. 90
 2. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G,

Gelly S, Uszkoreit J, Houlsby N. An image is worth 16x16 words: Transformers for image recognition at scale. In:
International Conference on Learning Representations (2021). arxiv: 2010. 11929

 3. Ben-Nun T, Hoefler T. Demystifying parallel and distributed deep learning: an in-depth concurrency analysis. ACM
Comput Surv. 2019. https:// doi. org/ 10. 1145/ 33200 60.

 4. Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, Tulloch A, Jia Y, He K. Accurate, Large Minibatch
SGD: Training ImageNet in 1 Hour 2018. arXiv: 1706. 02677

 5. Sergeev A, Balso M.D. Horovod: fast and easy distributed deep learning in TensorFlow 2018. arXiv: 1802. 05799
 6. Li S, Zhao Y, Varma R, Salpekar O, Noordhuis P, Li T, Paszke A, Smith J, Vaughan B, Damania P, Chintala S. PyTorch

distributed: experiences on accelerating data parallel training. Proc VLDB Endow. 2020;13(12):3005–18. https:// doi.
org/ 10. 14778/ 34154 78. 34155 30.

 7. Rasley J, Rajbhandari S, Ruwase O, He Y. DeepSpeed: system optimizations enable training deep learning models
with over 100 billion Parameters, pp. 3505–3506. Association for Computing Machinery, New York, NY, USA (2020).
https:// doi. org/ 10. 1145/ 33944 86. 34067 03

 8. Jülich Supercomputing Centre. JUWELS: Modular Tier-0/1 Supercomputer at Jülich Supercomputing Centre. J Large
Scale Res facil JLSRF. 2019;5:135. https:// doi. org/ 10. 17815/ jlsrf-5- 171

 9. Top500. https:// top500. org/ lists/ top500/ list/ 2022/ 06/. Accessed: 2022-09-20
 10. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei

L. ImageNet large scale visual recognition challenge. Int J Comput Vision (IJCV). 2015;115(3):211–52. https:// doi. org/
10. 1007/ s11263- 015- 0816-y.

 11. Mattson P, Cheng C, Diamos G, Coleman C, Micikevicius P, Patterson D, Tang H, Wei G-Y, Bailis P, Bittorf V, Brooks
D, Chen D, Dutta D, Gupta U, Hazelwood K, Hock A, Huang X, Kang D, Kanter D, Kumar N, Liao J, Narayanan D,
Oguntebi T, Pekhimenko G, Pentecost L, Janapa Reddi V, Robie T, St John T, Wu C-J, Xu L, Young C. Zaharia, M. Mlperf
training benchmark. In: Dhillon, I., Papailiopoulos, D., Sze, V. (eds.) Proceedings of Machine Learning and Systems.
2020;vol 2:336–49.

 12. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun
ACM. 2017;60(6):84–90. https:// doi. org/ 10. 1145/ 30653 86.

 13. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift.
In: Bach F, Blei D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of
Machine Learning Research 2015: vol. 37, pp. 448–456. PMLR, Lille, France.

 14. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Lu, Polosukhin I. Attention is all you need.
Advances in Neural Information Processing Systems. 2017;30.

 15. Li D, Chen X, Becchi M, Zong Z. Evaluating the energy efficiency of deep convolutional neural networks on cpus
and gpus. In: 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing
and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-
SustainCom), pp. 477–484 2016. https:// doi. org/ 10. 1109/ BDClo ud- Socia lCom- Susta inCom. 2016. 76.

https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/resnet-benchmarks
https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/resnet-benchmarks
https://www.image-net.org/download.php
https://www.image-net.org/download.php
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/2010.11929
https://doi.org/10.1145/3320060
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1802.05799
https://doi.org/10.14778/3415478.3415530
https://doi.org/10.14778/3415478.3415530
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.17815/jlsrf-5-171
https://top500.org/lists/top500/list/2022/06/
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/3065386
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.76

Page 23 of 23Aach et al. Journal of Big Data (2023) 10:96

 16. Strubell E, Ganesh A, McCallum A. Energy and policy considerations for deep learning in NLP. In: Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 3645–3650. Association for Computa-
tional Linguistics, Florence, Italy 2019. https:// doi. org/ 10. 18653/ v1/ P19- 1355

 17. Langer M, He Z, Rahayu W, Xue Y. Distributed training of deep learning models: a taxonomic perspective. IEEE Trans
Parallel Distributed Syst. 2020;31(12):2802–18. https:// doi. org/ 10. 1109/ tpds. 2020. 30033 07.

 18. Dean J, Corrado G, Monga R, Chen K, Devin M, Mao M, Ranzato, MA, Senior A, Tucker P, Yang K, Le Q, Ng A. Large
scale distributed deep networks. Advances in Neural Information Processing Systems. 2012;25.

 19. Xing EP, Ho Q, Dai W, Kim JK, Wei J, Lee S, Zheng X, Xie P, Kumar A, Yu Y. Petuum: a new platform for distributed
machine learning on big data. IEEE Trans Big Data. 2015;1(2):49–67. https:// doi. org/ 10. 1109/ TBDATA. 2015. 24720 14.

 20. Chilimbi T, Suzue Y, Apacible J, Kalyanaraman K. Project Adam: building an efficient and scalable deep learning
training system. In: Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation.
OSDI’14, 2014: pp. 571–582. USENIX Association, USA.

 21. Iandola FN, Moskewicz M, Ashraf K, Keutzer K. FireCaffe: near-linear acceleration of deep neural network training
on compute clusters. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2592–2600
(2016). arxiv: 1511. 00175

 22. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, et al. MD. TensorFlow: large-
scale machine learning on heterogeneous systems (2015). arxiv: 1603. 04467

 23. Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z. MXNet: A flexible and efficient machine
learning library for heterogeneous distributed systems 2015. arxiv: 1512. 01274

 24. Götz M, Debus C, Coquelin D, Krajsek K, Comito C, Knechtges P, Hagemeier B, Tarnawa M, Hanselmann S, Siggel M,
et al. Heat—a distributed and gpu-accelerated tensor framework for data analytics. 2020 IEEE International Confer-
ence on Big Data (Big Data) 2020. https:// doi. org/ 10. 1109/ bigda ta500 22. 2020. 93780 50.

 25. Numpy. https:// numpy. org/. Accessed 20 Sep 2022.
 26. Rajbhandari S, Rasley J, Ruwase O, He Y. Zero: Memory optimizations toward training trillion parameter models.

In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–16
(2020). https:// doi. org/ 10. 1109/ SC414 05. 2020. 00024

 27. Shams S, Platania R, Lee K, Park S-J. Evaluation of deep learning frameworks over different hpc architectures. In: 2017
IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 1389–1396 (2017). https:// doi.
org/ 10. 1109/ ICDCS. 2017. 259

 28. SLURM. https:// slurm. sched md. com/. Accessed 20 Sep 2022.
 29. Yamazaki M, Kasagi A, Tabuchi A, Honda T, Miwa M, Fukumoto N, Tabaru T, Ike A, Nakashima K. Yet another acceler-

ated SGD: ResNet-50 Training on ImageNet in 74.7 seconds 2019. arxiv: 1903. 12650.
 30. Kumar S, Bradbury J, Young C, Wang YE, Levskaya A, Hechtman B, Chen D, Lee H, Deveci M, Kumar N, Kanwar P,

Wang S, Wanderman-Milne S, Lacy S, Wang T, Oguntebi T, Zu Y, Xu Y, Swing A. Exploring the limits of concurrency in
ML training on Google TPUs. 2021. arxiv: 2011. 03641

 31. Krizhevsky A. One weird trick for parallelizing convolutional neural networks. 2014. arxiv: 1404. 5997
 32. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z.D Rethinking the inception architecture for computer vision. In:

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016). https:// doi. org/
10. 1109/ CVPR. 2016. 308.

 33. Pumma S, Buono D, Checconi F, Que X, Feng W-C. Alleviating load imbalance in data processing for large-scale deep
learning. In: 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), pp.
262–271 (2020). https:// doi. org/ 10. 1109/ CCGri d49817. 2020. 00- 67.

 34. Gibiansky A. Bringing HPC techniques to deep learning 2017. https:// andrew. gibia nsky. com/ blog/ machi ne- learn
ing/ baidu- allre duce/. Accessed 31 Aug 2021.

 35. NCCL. https:// devel oper. nvidia. com/ nccl. Accessed 20 Sep 2022.
 36. Gloo. https:// github. com/ faceb ookin cubat or/ gloo. Accessed 20 Sep 2022.
 37. DALI. https:// devel oper. nvidia. com/ dali. Accessed 20 Sep 2022.
 38. Zolnouri M, Li X, Nia V.P. Importance of data loading pipeline in training deep neural networks 2020. arxiv: 2005. 02130.
 39. Wang G, Lei Y, Zhang Z, Peng C. A communication efficient ADMM-based distributed algorithm using two-dimen-

sional torus grouping AllReduce. Data Sci Eng. 2023;1–12.
 40. Zhou Q, Kousha P, Anthony Q, Shafie Khorassani K, Shafi A, Subramoni H, Panda DK. Accelerating MPI all-to-all com-

munication with online compression on modern GPU clusters. In: High Performance Computing: 37th International
Conference. ISC High Performance 2022. Hamburg, Germany: Springer; 2022. p. 3–25.

 41. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural
Netw. 1994;5(2):157–66. https:// doi. org/ 10. 1109/ 72. 279181.

 42. Loshchilov I, Hutter F. SGDR: Stochastic gradient descent with warm restarts. International Conference on Learning
Representations (2017).

 43. Suarez E, Eicker N, Lippert T. Modular supercomputing architecture: from idea to production. Contemporary high
performance computing. 2019;23–55. https:// doi. org/ 10. 1201/ 97813 51036 863-9.

 44. NVLINK. https:// www. nvidia. com/ en- us/ data- center/ nvlink/. Accessed 20 Sep 2022.
 45. GPFS. https:// apps. fz- jueli ch. de/ jsc/ hps/ juwels/ files ystems. html. Accessed 17 Apr 2023.
 46. EasyBuild. https:// github. com/ easyb uilde rs/ easyb uild. Accessed 20 Sep 2022.
 47. NSys. https:// docs. nvidia. com/ nsight- syste ms/ index. html. Accessed 20 Sep 2022.
 48. cuDNN. https:// devel oper. nvidia. com/ cudnn. Accessed 20 Sep 2022.
 49. Graphcore. https:// www. graph core. ai/ produ cts/ ipu. Accessed 20 Sep 2022.
 50. NVLAMB. https:// github. com/ NVIDIA/ DeepL earni ngExa mples/ blob/ master/ PyTor ch/ Langu ageMo deling/ BERT/

README. md. Accessed 20 Sep 2022.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.1109/tpds.2020.3003307
https://doi.org/10.1109/TBDATA.2015.2472014
http://arxiv.org/abs/1511.00175
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1512.01274
https://doi.org/10.1109/bigdata50022.2020.9378050
https://numpy.org/
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/ICDCS.2017.259
https://doi.org/10.1109/ICDCS.2017.259
https://slurm.schedmd.com/
http://arxiv.org/abs/1903.12650
http://arxiv.org/abs/2011.03641
http://arxiv.org/abs/1404.5997
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CCGrid49817.2020.00-67
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://developer.nvidia.com/nccl
https://github.com/facebookincubator/gloo
https://developer.nvidia.com/dali
http://arxiv.org/abs/2005.02130
https://doi.org/10.1109/72.279181
https://doi.org/10.1201/9781351036863-9
https://www.nvidia.com/en-us/data-center/nvlink/
https://apps.fz-juelich.de/jsc/hps/juwels/filesystems.html
https://github.com/easybuilders/easybuild
https://docs.nvidia.com/nsight-systems/index.html
https://developer.nvidia.com/cudnn
https://www.graphcore.ai/products/ipu%20
https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/README.md
https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/README.md

	Large scale performance analysis of distributed deep learning frameworks for convolutional neural networks
	Abstract
	Introduction
	Related work
	Overview of the benchmark setup
	Horovod
	PyTorch-distributed data parallel
	DeepSpeed
	Data loaders and dataset compression
	GPU scaling issues
	Residual neural networks
	Learning rate scheduling
	JUWELS HPC system and software stack

	Benchmark results
	Efficiency
	Accuracy

	Summary, conclusion, and outlook
	Acknowledgements
	References

