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Abstract 

Continuously increasing data volumes from multiple sources, such as simulation and 
experimental measurements, demand efficient algorithms for an analysis within a 
realistic timeframe. Deep learning models have proven to be capable of understand-
ing and analyzing large quantities of data with high accuracy. However, training them 
on massive datasets remains a challenge and requires distributed learning exploiting 
High-Performance Computing systems. This study presents a comprehensive analysis 
and comparison of three well-established distributed deep learning frameworks—
Horovod, DeepSpeed, and Distributed Data Parallel by PyTorch—with a focus on their 
runtime performance and scalability. Additionally, the performance of two data loaders, 
the native PyTorch data loader and the DALI data loader by NVIDIA, is investigated. To 
evaluate these frameworks and data loaders, three standard ResNet architectures with 
50, 101, and 152 layers are tested using the ImageNet dataset. The impact of different 
learning rate schedulers on validation accuracy is also assessed. The novel contribution 
lies in the detailed analysis and comparison of these frameworks and data loaders on 
the state-of-the-art Jülich Wizard for European Leadership Science (JUWELS) Booster 
system at the Jülich Supercomputing Centre, using up to 1024 A100 NVIDIA GPUs 
in parallel. Findings show that the DALI data loader significantly reduces the overall 
runtime of ResNet50 from more than 12 h on 4 GPUs to less than 200 s on 1024 GPUs. 
The outcomes of this work highlight the potential impact of distributed deep learning 
using efficient tools on accelerating scientific discoveries and data-driven applications.
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Graphical Abstract

Introduction
In the past few years, deep neural networks have become powerful tools to solve prob-
lems from different scientific disciplines. Especially in the field of image recognition, sig-
nificant advancements have been made using Convolutional Neural Networks (CNNs) 
and Transformers [1, 2]. As the size of the datasets used for training and the model sizes 
continuously increase, their training becomes more and more computationally expen-
sive. Therefore, it is of utmost importance to find suitable and efficient methods to 
reduce the training runtime by as much as possible.

Using High-Performance Computing (HPC) systems, it is possible to accelerate the 
training  and model generation processes, i.e., by intelligently subdividing the problem 
and using massively parallel hardware for efficiently distributing the computational load. 
The two main strategies for distributing the training of neural networks to different work-
ers, where a worker is usually a Graphics Processing Unit (GPU), are model and data par-
allelism   [3]. The former method splits the neural network and distributes it across the 
workers. In contrast, the latter splits the input data and the network is trained with differ-
ent batches per worker. At the end of an epoch, all gradients are merged to apply the same 
update to the network’s weights on every worker. The Message Passing Interface (MPI) is 
frequently used to communicate the parameters between the workers in either a synchro-
nous or asynchronous way. In the synchronous case, an AllReduce operation is exe-
cuted for gradient reduction, while in the asynchronous case, a single central parameter 
server receives all gradient updates from the workers and performs the optimization step. 
For the asynchronous case, the overall performance is limited by the network bandwidth 
of the parameter server and depends on the amount of data to transmit per worker. The 
usage of alternative strategies such as asynchronous ring communications or employing 
MPI can alleviate this bottleneck. In general, with an increasing number of computational 
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nodes, the communication to share the gradients becomes the main bottleneck. To mini-
mize this communication overhead, the number of gradient reductions has to be reduced.

The focus of this study is on data parallelism, as it offers benefits for neural networks 
of any size when trained on large datasets, whereas model parallelism is primarily 
advantageous for network architectures that do not fit onto a single GPU. Consequently, 
data parallelism holds an advantage in its ability to cater to a wider range of neural net-
work architectures, whereas model parallelism is better suited for handling larger neural 
networks that face memory limitations. The standard approach to scale Deep Learning 
(DL) trainings on large HPC systems is to increase the global batch size BS, which may, 
however, lead to insufficient validation accuracies   [4]. To retain a sufficient accuracy, 
modifications to the training process are frequently necessary, which may also affect the 
parallel performance. It is furthermore challenging to apply the right framework for a 
specific learning task that involves large input data or models, and at the same time, ben-
efit from the computational power of HPC systems.

The motivation of this study is to provide guidance in this direction. To this end, the 
performance in terms of accuracy and scalability of the parallel frameworks—Horo-
vod  [5], PyTorch-Distributed Data Parallel (PyTorch-DDP)  [6] and DeepSpeed  [7] 
are evaluated on the European HPC system Jülich Wizard for European Leadership 
Science (JUWELS) [8] Booster module (place 12 in Top500 [9] as of 08/2022). These 
three frameworks are easily accessible as they are open-source and have gained high 
popularity in recent years. Their analysis supports the research community to decide 
on a framework. The benchmarks are performed using the popular ImageNet data-
set [10] and three residual neural networks (ResNets) with 50, 101, and 152 layers  [1] 
to enable generic comparison with established benchmark studies.

The main contributions of this study are as follows:

• A comprehensive scalability analysis and comparison of training ResNet50, 
ResNet101, and ResNet152 on ImageNet with Horovod, PyTorch-DDP, and Deep-
Speed, using the DALI and native PyTorch data loaders ranging on up to 1024 
GPUs is performed. The results demonstrate that in combination with the native 
PyTorch data loader, DeepSpeed shows the best performance on a small number of 
GPUs, while Horovod and PyTorch-DDP outperform it when using a larger num-
ber of GPUs. However, in comparison, the use of DALI leads to higher throughput 
and improves scalability for all ResNet architectures.

• An assessment of the influence of step-wise, cosine, and exponential learning 
rate annealing on the validation accuracy for different batch sizes ranging from 
BS = 256 to 65,536 is performed. These findings reveal that cosine annealing 
delivers superior performance on small and medium batch sizes, while exponen-
tial annealing achieves the highest accuracy for the largest batch size.

The paper is structured as follows. The established distributed DL frameworks as well 
as the challenges that arise when scaling the training to large HPC systems are dis-
cussed in "Related work" section. In "Overview of the benchmark setup" section, an 
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overview of the experimental setup is given. Subsequently, "Benchmark results" sec-
tion presents the main benchmark results from a computational perspective. Finally, 
"Summary, conclusion, and outlook" section summarizes the findings, draws conclu-
sions, and gives an outlook to future work.

Related work
The ImageNet dataset, originally introduced for the ImageNet Large Scale Visual Rec-
ognition Challenge (ILSVRC), features 1,281,167 training images and 50,000 validation 
images divided into 1000 object classes [10]. This dataset is commonly used in the litera-
ture as an important benchmark to test algorithms, where their performance is meas-
ured through validation accuracy V  [11], which is computed from correctly classified 
validation images.

AlexNet [12] (a CNN) was one of the first machine learning models to achieve high 
accuracy on the ImageNet dataset in the ILSVRC 2012. Since then, multiple improve-
ments have been made to the original network structure  [13], yielding the current 
ResNet architecture [1] with a varying amount of convolutional layers. Although Trans-
former architectures  [14] have recently been shown to achieve even better results in 
image classification tasks, CNNs are still widely used due to lower training duration, low 
energy usage, and their good scalability [15, 16].

Many distributed DL frameworks exist for scaling especially neural network models 
to multiple workers in an HPC environment. A literature review is given in [17] and an 
in-depth performance analysis is presented in [3]. One of the first frameworks to scale to 
a large number of computational nodes equipped with Central Processing Units (CPUs) 
was DistBelief by Google [18] using an asynchronous Stochastic Gradient Descent (SGD) 
method. Others, such as Petuum [19] or Project Adam [20] have improved this idea, e.g., 
by introducing dynamic scheduling. With FireCaffe [21], the focus shifted towards using 
GPU clusters and synchronous gradient reduction methods.

The most common DL libraries such as TensorFlow  [22] from Google, PyTorch from 
Facebook, and MXNet [23] from Apache, have their unique distributed training strate-
gies. Other frameworks such as HeAT [24] take a more general approach to distributed 
machine learning by providing a scalable NumPy-like  [25] Application Programming 
Interface (API) to enable all kinds of data analytics, not being limited only to neural net-
works. While all of these frameworks mainly focus on enabling data parallelism, more 
recently Microsoft introduced the ZeRO  [26] and DeepSpeed  [7] frameworks that can 
train models with billions of parameters through model parallelism. A small scale study 
(up to four GPUs) of the performance of TensorFlow and FireCaffe on different HPC sys-
tems is available in  [27]. An overview of the frameworks and their parallelism and com-
munication strategies are shown in Table 1.

The present work solely focuses on synchronous communication and data-par-
allel functionality of the commonly used frameworks. Horovod, PyTorch-DDP, and 
DeepSpeed are all compatible with the HPC system’s job scheduler SLURM [28] and 
the InfiniBand communication pattern by default, while the distributed versions of 
MXNet and TensorFlow are not.



Page 5 of 23Aach et al. Journal of Big Data           (2023) 10:96  

In the literature, various tests using a ResNet50 on the ImageNet dataset exist. In 
the original ResNet paper [1], it takes 29 h to train the network for 90 epochs on eight 
NVIDIA Tesla P100 GPUs with a batch size of BS = 256 . Subsequently, the train-
ing time is reduced to 1 h on 256 NVIDIA Tesla P100 GPUs  [4]. Finally, in  [29], a 
training time of only 74 s on 2048 NVIDIA Tesla V100 GPUs is achieved. The cur-
rent benchmark record is 28.8 s as of 10/2022    [30], where TPUs have been used 
instead of GPUs. To train a ResNet50 in such a short time, the authors increase the 
batch size to BS = 8192 and BS = 81,920 . A large BS value, however, usually leads to 
a reduction in generalization performance. To prevent this, several hyperparameter 
modifications are applied in [29] to reach a V comparable to that of [1]. Therefore, the 
learning rate LR is scaled linearly with respect to the number of workers. This is moti-
vated by the fact that with fewer weight updates, the learning rate has to be increased 
to achieve similar gradient adjustments compared to using a small learning rate with 
more frequent gradient updates. However, this linear scaling rule does not apply to 
all cases, i.e., during the start of the training, where a lot of parameters are subject to 
changes, a large learning rate may prohibit the optimizer from converging. Therefore, 
a warm-up technique is used that slowly increases the learning rate during the first 
five epochs  [31]. Another technique reported to improve the accuracy when train-
ing with a large BS is label-smoothing [32], which is a regularization method adapted 
to classification models. Using larger ResNet architectures, such as the ResNet101 or 
ResNet152, leads to slightly improved V values  [1].

In this work, the learning rate warm-up, learning rate scaling, and the label-smooth-
ing techniques are used to stabilize the training with the default SGD optimizer with 
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relatively large BS values. Additionally, three different learning rate schedules are 
explored and their performance in terms of V is analyzed.

Overview of the benchmark setup
This section gives an overview of the main frameworks used in this study, i.e., Horovod 
is introduced in "Horovod" section, PyTorch in "PyTorch-distributed data parallel" sec-
tion, DeepSpeed in "DeepSpeed" section, and the data loaders in "Data loaders and data-
set compression" section. Furthermore, their communication operations are presented 
and examples of how to include them into actual Python code are provided. General 
issues that arise when scaling to a large amount of GPUs are addressed in "GPU scaling 
issues" section and the different ResNet architectures are introduced in "Residual neural 
networks" section. Three different learning rate scheduling methods with the potential 
of increasing the accuracy of the training are introduced in  "Learning rate scheduling" 
section. The hardware and software configuration of the supercomputer used for the 
benchmark tests is presented in "JUWELS HPC system and software stack" section.

Horovod

Horovod is an open-source distributed DL library originally developed by Uber for Ten-
sorFlow  [5]. It is also supported as a backend library in the most common DL frame-
works such as PyTorch and Apache MXNet. Minimal code changes are required to 
integrate Horovod into these DL frameworks. Code snippet  1 gives an example of how 
to integrate Horovod with PyTorch.

The work by Pumma et al. [33] provides an overview and an analysis of the commu-
nication patterns in Horovod. It is one of the first libraries to use a decentralized Ring 
AllReduce approach [34] to compute the gradient reduction instead of a single param-
eter server receiving all the updates, cf. "Introduction" section. It relies on low-level 
communication libraries such as MPI, the NVIDIA Collective Communications Library 
(NCCL) [35], or Facebook Gloo  [36]. It is observed that the NCCL AllReduce yields 
superior performance on NVIDIA GPUs [6].

Table 1 Overview of distributed DL frameworks, adapted from [6, 17]

Bounded asynchronous is a hybrid of synchronous and asynchronous communication

Framework Parallelism Communication

DistBelief [18] Model + Data Asynchronous

FireCaffe [21] Data Synchronous

Horovod [5] Model + Data Synchronous

MXNet [23] Model + Data Bounded Asynchronous

Petuum [19] Model + Data Bounded Asynchronous

TensorFlow [22] model + Data Bounded Asynchronous

PyTorch-DDP [6] Model + Data Synchronous

DeepSpeed [7] Model + Data Synchronous
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On a local worker level, the communication operations in Horovod are asynchronously 
handled by a separate background thread. This thread repeatedly checks for commu-
nication requests and performs the corresponding data transfers. Since these transfers 
may be requested asynchronously, the order of execution per worker may also be dif-
ferent. However, Horovod uses collective communication directives from other libraries 
and hence has to execute a consensus protocol to ensure consistency (in terms of order) 
across all workers. The process is summarized here: 

 (i) One global background thread receives all the transfer requests from the local 
background threads.

 (ii) The global background thread puts the requests in the correct order and sends the 
list back to the local instances.

 (iii) Each local thread combines its local data and carries out the data exchange with 
the other workers via AllReduce.

This back and forth communication creates overhead that can limit the scalabilty of the 
framework.

In Horovod, the computations and communications are coupled with the ability to 
batch small AllReduce operations. This exploitation of batching communication 
operations is known as tensor fusion [5]. With this operation, the smaller data volumes 
are transferred across different workers by locally fusing the data that are ready to be 
reduced. Hence, fewer AllReduce operations are required. In large neural networks 
with large number of parameters, this operation is expected to yield huge parallel per-
formance gains.

PyTorch‑distributed data parallel

PyTorch is a machine learning framework primarily developed by Facebook AI Research. 
The PyTorch-DDP module features a built-in way to parallelize the training of neural 
networks across multiple workers, e.g, GPUs. Code snippet  2 shows an example of how 
DDP in PyTorch is used. Similar to Horovod, the PyTorch-DDP library uses an All-
Reduce paradigm (with the communication libraries NCCL, Gloo, or MPI) for updating 
the gradients used in deep neural networks. To trigger the communication operation, a 
custom ‘hook’ is registered in the internal automatic differentiation engine that is inte-
grated into the backward pass operation of deep neural networks [6]. A separate code for 
managing the communication is hence not required.

Analogous to Horovod’s tensor fusion operation, PyTorch-DDP features gradient 
bucketing, where instead of an immediate AllReduce operation the algorithm waits 
for a few processor cycles once a batch of gradients is complete, and buckets (or ‘fuses’ 
in the sense of Horovod) multiple gradient parameters into a single parallel operation. 
Hence, the computation and communication are overlapped, thus skipping frequent gra-
dient synchronization. A drawback of this method is a possible mismatch in the All-
Reduce operation if the reduction order is not the same across all processes—resulting 
in an incorrect reduction or data inconsistencies. This issue is addressed by bucketing 
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the gradients in the reversed order obtained during the forward pass operation. This is 
motivated by the fact that the last layers of a network are likely the first ones to finish 
computation during the backward pass. Another issue is the skipped bucketed gradients 
that never enter the AllReduce operation. PyTorch-DDP handles this issue by a par-
ticipation algorithm, which checks the output tensors during the forward pass to find all 
non-participated parameters (i.e., based on gradients that have not been updated) in the 
current iteration to be included in the next iteration.

DeepSpeed

The focus of DeepSpeed developed by Microsoft Research is on training large language 
models. These models usually feature several billion parameters and are trained on data-
sets from the natural language domain, which are significantly larger than most com-
puter vision datasets. The main issue with these large language models is their massive 
memory footprint, a problem that is addressed with the ZeRO optimizer as part of Deep-
Speed. This parallel optimizer eliminates memory redundancies by not only distributing 
the training data across workers but also the optimizer, gradient, and (if required) model 
parameters across workers. In contrast to the default data-parallel approach, the model 
is, therefore not necessarily replicated on each worker. Still, after each training step, an 
AllReduce communication step is necessary to ensure consistency. This is performed 
in a two-step process: first, different parts of the data are distributed to different workers 
with a ReduceScatter command, then each worker gathers the different chunks of 
data with an AllGather operation [26]. Code snippet 3 shows the integration of Deep-
Speed within PyTorch, which is currently the only supported DL backend.
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Data loaders and dataset compression

Two types of data loaders and corresponding dataset compressions are compared in this 
work. One of the data loaders is the native PyTorch data loader, which uses the raw Ima-
geNet data in the  JPG  format. This data loader only supports raw image data and 
performs all pre-processing steps on the CPUs. The other data loader is the NVIDIA 
Data Loading Library (DALI) [37], where a compressed version (TFRecord) of the Ima-
geNet dataset is used. DALI is an open-source framework to accelerate the data-loading 
process in DL applications by involving the GPU, following a pipeline-based approach. 
Usually, the GPU runs computations much faster compared to the data-loading speed 
of the CPU. The idea of DALI is to prevent the GPU from starving by moving the data-
loading process to the GPU at an early stage. The GPU then performs the data pre-pro-
cessing, such as image resizing, cropping, and normalization on the fly. By pipe-lining 
these operations and executing them directly on the GPU, DALI minimizes the amount 
of data that needs to be transferred between the CPU and GPU, which reduces the over-
head associated with these operations. DALI supports multiple data formats and with its 
unified interface, it is easy to integrate into all common DL frameworks. With this seam-
less integration developers can exploit the full potential of their GPU-based systems 
without having to modify their existing workflows significantly or switch between differ-
ent data loading libraries. While the main focus of DALI is the GPU-based approach, it 
also offers the possibility to use the CPU for all steps of the pipeline. In this case also the 
pre-processing is performed on the CPU. Initial benchmarks show a speed-up between 
20-40% in throughput compared to the original PyTorch data loader [38].

It should be noted that in terms of actual disk space, the difference between the com-
pressed  TFRecord  version of the ImageNet dataset (144 GB) and the raw  JPG  
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data (154 GB) is marginal. However, the file structure of the  TFRecord  dataset is 
much better suited for data loading in comparison to the over one million single image 
files in the raw dataset.

GPU scaling issues

GPU scaling in deep learning presents several challenges, including communication 
overhead, load balancing, and memory limitations. Communication overhead arises due 
to the constant synchronization and information exchange required between multiple 
GPUs during training. This overhead can reduce efficiency and performance as it grows 
with the number of GPUs. Solutions include using high-bandwidth, low-latency inter-
connects, and implementing efficient communication algorithms such as ring-based 
AllReduce methods [39, 40]. Load balancing is crucial for ensuring an even distribu-
tion of computational workload across all GPUs, maximizing resource utilization. An 
uneven workload distribution can lead to idle GPUs, wasting resources and increasing 
runtime. Dynamic load balancing algorithms and data or model parallelism techniques 
can help distribute tasks and data efficiently across multiple GPUs. Memory limitations 
pose a challenge when large models (or datasets) exceed a single GPU memory capac-
ity, causing out-of-memory errors or forcing smaller batch sizes, which can negatively 
impact performance and convergence.

Residual neural networks

A prevalent challenge when training deep neural networks is the vanishing gradi-
ent problem, which leads to accuracy degradation [41]. ResNet architectures address 
this issue by introducing “skip-connections” that enable the training of deep networks 
without compromising accuracy. For larger vision datasets, ResNet50, ResNet101, and 
ResNet152 are the most widely adopted models. All models consist of one input layer 
and one fully-connected output layer but vary in the number of intermediate convolu-
tional layers (48 vs. 98 vs. 150), see Fig.  1 for a visualization of the architecture. As a 
result, 3.8× 109 floating-point operations per forward pass are needed for a ResNet50, 
7.6× 109 for a ResNet101, and 11.3× 109 for a ResNet152. Although having more lay-
ers typically allows for the representation of more complex phenomena, it is essential to 
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Fig. 1 Standard ResNet architecture with one input layer (in orange), a varying number convolutional layers 
(in purple) and a fully-connected output layer (in white). Figure adapted from  [1]
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consider the trade-off between model complexity and training efficiency, as an increased 
number of floating-point operations leads to longer runtimes.

Learning rate scheduling

A known problem in large-scale distributed DL is the major drop in the validation 
accuracy V when using a large BS [4], regardless of the used framework, data loader, 
or optimizations (e.g., label-smoothing). A larger BS yields fewer optimization steps, 
thus compromising the accuracy of the optimizer. This issue is one of the key chal-
lenges in distributed DL. To avoid divergence of the training process for BS ≥ 32k 
on ImageNet, further optimizations, such as LR scheduling, are necessary. The most 
common approach for a LR schedule on the ImageNet dataset is a stepwise annealing 
method [1]. This schedule reduces the LR in regular intervals over time by an order of 
magnitude, i.e., in the ImageNet training, these intervals are set at epoch numbers 30, 
60, and 80.

Since the LR schedule plays an important role in the performance of a model, different 
approaches exist in the literature. The cosine-annealing schedule  [42] is supported by 
PyTorch and uses the cosine function for smoother LR annealing over time. In this case, 
the learning rate LRt at the current epoch t is defined by:

where LRmin and LRmax are the minimum and maximum values of the learning rate, and 
tmax is the total number of epochs used in the training. This decays LR gradually at every 
epoch, compared to the sharp drops of the step-wise annealing. Another approach to LR 
scheduling is the exponential decay schedule. Here, the LR starts with a large value and 
is then decreased rapidly in the beginning and gradually afterwards in an exponential 
manner. The learning rate LRt at the current epoch t is given by:

where the decay factor is usually set to γ = 0.95 . The comparison in Fig. 8a shows that 
this scheduling method decreases the learning rate at similar orders of magnitude as the 
step-wise scheduler but in a smoother way.

JUWELS HPC system and software stack

The benchmarks presented in "Benchmark results" section are performed on the JUWELS 
HPC system. This system has a Modular Supercomputing Architecture (MSA)  [43] and 
consists of a cluster and a booster module. The experiments use the GPU-based JUWELS 
Booster module, which consists of 936 compute nodes, each equipped with two AMD 
EPYC Rome 7402 CPU with 2x24 cores, clocked at 2.8 GHz, 512 GB Dynamic Random 
Access Memory (DRAM), and four NVIDIA A100 GPU with 40 GB High Bandwidth 
Memory (HBM). The GPUs communications in a compute node are performed via 
NVLINK [44]. The interconnect between compute nodes is a Mellanox InfiniBand HDR 
network with DragonFly+ topology. Each compute node has four HDR host channel 
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adapters. A Peripheral Component Inter-Connect Express (PCIe) Gen4 bus connects 
the components. In total, the JUWELS Booster is equipped with 3,744 GPUs and has 73 
PFlops peak performance. Figure 2 shows the schematic of a single node.

The compressed and uncompressed ImageNet datasets are both stored on the SCRATCH 
partition of the JUWELS General Parallel File System  [45]. This partition is optimized for 
the storage of large data and features a high Input/Output (I/O) bandwidth.

For running the experiments, the following software versions are deployed, which are 
available through JUWELS’ EasyBuild [46] software system:

• GCC 11.2.0

• OpenMPI 4.1.2

• Python 3.9.6

• CUDA 11.5

• PyTorch 1.11.0

• Horovod 0.24.3

• Deepspeed 0.6.3

• DALI 1.12.0 (virtual environment)

The number of CPU threads per data loader instance is set to 8.

Benchmark results
This section evaluates the performance of the three frameworks Horovod, PyTorch-DDP, 
and DeepSpeed with the native PyTorch and the DALI data loaders on the JUWELS 
Booster. The runtime T of training a ResNet50, a ResNet101, and a ResNet152 on the 
ImageNet dataset for 90 epochs with a batch size of BS = 64 per GPU is measured and 
analyzed in "Efficiency" section. Additionally, the effect of three different learning rate 
schedulers on V is explored in "Accuracy" section.

Efficiency

The results for the ResNet50 training in terms of data throughput DT, measured in 
images i per second over the number of GPUs, are shown in Fig. 3. Overall, the DALI 
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and the HDR HCAs via two PCIe Gen4 switches. The GPUs communicate via NVLINK
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data loader (Fig.  3a) achieves a higher throughput of images compared to the native 
PyTorch data loader (Fig. 3b), and this is observed to be independent of the distributed 
DL framework. For the native data loader, the three frameworks show similar perfor-
mances up to 64 GPUs. For a smaller number of GPUs, DeepSpeed shows the highest 
DT, but performance drops for a larger number of GPUs, where PyTorch-DDP performs 
the best. In summary, for all three frameworks, it is evident that the native data loader 
cannot match the performance of the DALI data loader.

For a consistent scalability comparison, the parallel efficiency metric EG is calculated as

(3)EG =
SG

G
,
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(a) Throughput of Horovod and PyTorch with the DALI data loader CPU and
GPU version on the compressed ImageNet dataset.
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(b) Throughput of Horovod, PyTorch-DDP, and DeepSpeed with the native Py-
Torch data loader on raw ImageNet dataset, including comparison with Horovod-
DALI-CPU throughput. The largest configuration only features 512 GPUs in this
case as no significant additional speed-up is expected on larger configurations.

Fig. 3 Throughput of different frameworks and DALI (a) and native (b) data loader for the ResNet50 case, 
averaged over three experimental runs. The variance between runs is small (in general < 5% ) and therefore 
not shown
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where S is the speed-up and G is the number of workers. The speed-up SG is computed 
as

with reference runtime T4 , i.e., using four GPUs (one node on the JUWELS Booster). 
Note that EG of (or close to) unity is the ideal scenario with perfect scaling. The quan-
tity EG is plotted in Fig. 4 for the DALI data loader over the number of GPUs. Note that 

(4)SG =
T4

TG

,
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(a) Data loading and image pre-processing handled by the CPUs
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(b) Data loading and image pre-processing handled by the GPUs
Fig. 4 Parallel efficiency of Horovod and PyTorch-DDP on up to 1024 GPUs with the DALI data loader for 
CPU- (a) and GPU-based (b) pre-processing with compressed ImageNet dataset for the ResNet50 case, 
averaged over three runs. Black line denotes the ideal case. The variance between runs is small (in general 
< 5% ) and therefore not shown
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the DeepSpeed framework cannot use the DALI data loader. It is clear that the tested 
frameworks show similar scaling performances. Independent of the hardware accelera-
tion (pre-processing on CPU in Fig. 4a or GPU in Fig. 4b) and the framework, the EG 
value remains above 0.65 up to 1024 GPUs. The training with PyTorch-DDP using the 
CPU for data input performs slightly better than its Horovod counterpart on 256 and 
512 GPUs. With 1024 GPUs, the trainings using CPU for data input achieve a higher 
EG value of 0.76 compared to the ones using GPU, which is at EG = 0.68 . These findings 
show data loading with CPUs to be favorable for large-scale trainings. An analysis of the 
average CPU usages shows an occupancy of less than 40% across all configurations. It is 
assumed that the computationally strong host CPUs make up for any performance gains 
achieved by transferring the image pre-processing onto the GPUs. For hardware setups 
with less powerful host CPUs, using the GPU-based DALI version could still improve 
performance.

Figure  5 presents the parallel efficiency results for the native PyTorch data loader. 
When compared to the scalability of the DALI data loader (see Fig. 4), the scaling per-
formance of the tested frameworks is considerably worse. The EG values of the train-
ing with PyTorch-DDP using the native data loader (denoted as PyTorch-DDP-native in 
Fig. 5) drops below 0.44 already with 256 GPUs, whereas Horovod and DeepSpeed have 
EG values of 0.50 and 0.33, respectively on 128 GPUs. With 512 GPUs, all of the frame-
works achieve an EG value of less than 0.24, indicating the limitations of the data loader 
on parallelization. The superior performance of the PyTorch-DDP-native data loader 
could be due to its better compatibility with the PyTorch-DDP framework.

Fig.  6 shows the scaling performance of three ResNet architectures using the DALI 
data loader and PyTorch-DDP framework. The ResNet50, 101, and 152 model show sim-
ilar EG values up to 16 GPUs. On larger configurations with more GPUs, the ResNet152 
achieves the highest EG values, reaching 0.81 on 1024 GPUs. When more than 512 GPUs 
are utilized, the ResNet50 achieves the lowest EG values. This behavior is expected, as 
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Fig. 5 Parallel efficiency of Horovod, PyTorch-DDP and DeepSpeed on up to 512 GPUs with the native PyTorch 
data loader and raw ImageNet dataset for the ResNet50 case, averaged over three runs. Black line denotes 
the ideal case. The variance between runs is small (in general < 5% ) and therefore not shown
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a larger neural network means that more computation is necessary, which improves 
the computation to communication ratio and therefore also the scaling behavior. Nev-
ertheless, the superiority of the DALI data loader over the native data loader can also 
be observed for the training with ResNet101 (see Fig. 7). On configurations with more 
than 32 GPUs, the DALI data loader clearly outperforms the native one in terms of scal-
ing performance. Moreover, it is evident that PyTorch-DDP shows slightly better scaling 
performance than the Horovod framework (compare blue with green lines in Fig. 7).

For further verification of the results and a comparison of the DALI and native data 
loader, the NSys profiling tool  [47] is used to analyze the amount of communication, 
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Fig. 6 Parallel efficiency comparison of PyTorch-DDP on up to 1024 GPUs for different ResNets with DALI 
data loader (CPU-based) and compressed ImageNet dataset, averaged over three runs. The black line denotes 
the ideal case. The variance between runs is small (in general < 5% ) and therefore not shown
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Fig. 7 Parallel efficiency of Horovod and PyTorch-DDP on up to 1024 GPUs training a ResNet101 with the 
DALI data loader and compressed ImageNet dataset and native PyTorch data loader and uncompressed 
ImageNet dataset, averaged over three runs. Black line denotes the ideal case. The variance between runs is 
small (in general < 5% ) and therefore not shown
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computation, and data loading that takes place during the training runs of all three 
ResNet architectures, where the results are shown in Table 2 in terms of three quantities. 
These are: (i) the runtime share by the Compute Unified Device Architecture (CUDA) 
kernels to perform ‘communication’-related NCCL tasks (named communication), (ii) 
the runtime share to perform ‘computation’-related tasks with the cuDNN library  [48] 
(named computation), such as the time for the calculation of the convolutional layers, 
and (iii) the runtime share to execute ‘input/output’-related tasks, such as data loading 
(named I/O).

For both types of data loaders, the time percentage spent on communication 
increases with the number of workers, while the efforts for the computation and 
data loading processes reduce. This behavior is expected when scaling up tasks that 
require frequent communication on a cluster while keeping the size of the dataset 

Table 2 Profiling CUDA kernel time in percent spent on communication operations via 
AllReduce, computations with the cuDNN library, and data loading functions

The first 10 epochs of the training process are profiled with the NSys Profiler (first five epochs for four GPUs due to time 
limits of the profiler)

No. GPUs PyTorch-DDP DALI PyTorch-DDP native

AllReduce [ %]
(Communication)

data[%]
(I/O)

cuDNN[%]
(Computation)

AllReduce [ %]
(Communication)

data[%]
(I/O)

cuDNN[%]
(Computation)

(a) Training of ResNet50 on ImageNet

4 15.40 22.00 32.50 22.40 21.00 30.80

8 19.00 21.40 31.75 23.95 20.05 29.20

16 21.00 20.95 30.70 27.15 18.83 27.35

32 27.09 18.98 28.14 31.30 17.26 25.11

64 30.87 17.76 26.35 32.75 16.30 23.55

128 33.61 17.03 24.99 49.48 11.77 17.33

256 37.08 15.78 23.26 76.77 5.06 7.14

512 43.48 13.57 20.02 82.61 3.66 5.52

1024 46.18 11.56 17.31 – – –

(b) Training of ResNet101 on ImageNet

4 13.30 23.00 46.00 28.65 22.50 38.12

8 20.55 21.25 41.45 30.15 18.28 35.52

16 24.08 20.37 39.65 35.67 16.76 32.71

32 25.36 18.71 36.99 35.46 14.59 28.43

64 37.17 16.69 33.39 37.69 15.31 29.88

128 36.29 16.74 34.02 42.32 13.39 26.38

256 39.31 15.54 31.56 56.43 11.38 22.83

512 37.73 15.40 31.59 59.18 11.87 24.45

1204 49.18 11.87 24.45 – – –

(c) Training of ResNet152 on ImageNet

4 16.20 22.40 44.60 18.41 21.97 44.17

8 20.55 21.75 42.35 20.65 21.95 40.75

16 25.90 20.05 39.07 24.77 20.70 38.62

32 29.16 18.72 37.15 30.31 18.77 35.32

64 33.56 16.90 33.82 38.34 16.42 30.80

128 36.16 16.66 33.73 45.75 14.02 26.60

256 38.33 15.51 31.60 49.39 15.05 28.46

512 40.36 14.41 29.43 51.76 11.16 25.36

1024 43.21 13.08 26.99 – – –
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constant. For a smaller number of GPUs, the difference in time spent executing the 
AllReduce commands is similar for the DALI and native data loader methods. 
However, this difference increases rapidly with more workers. For example, in the 
ResNet50 case with 512 GPUs, the native data loader spends 82.61% of its time on 
communication, while the DALI data loader spends only 43.48% . A similar trend can 
be observed for the trainings with ResNet101 and ResNet152, where the native data 
loader spends 59.18 and 51.76% of its time on communication, compared to 37.73% 
and 40.36 for the DALI data loader, respectively. This substantial discrepancy could 
explain the poor scaling behavior of the native data loader. Regarding the computa-
tion time with the cuDNN library, it decreases for both data loaders as the num-
ber of GPUs increases, which is expected as the overall computational workload is 
distributed across a larger number of GPUs. For all three ResNet cases, the DALI 
data loader consistently exhibits higher computation percentages than the native 
data loader, suggesting that it effectively utilizes GPU resources. As for data load-
ing, the time spent decreases as the number of GPUs increases for both data loaders. 
Although the relative data loading time is comparable between the two data load-
ers, it is important to emphasize that the DALI data loader is much faster in abso-
lute timing. For example, in the ResNet152 case on 64 GPUs, the DALI data loader 
is responsible for 16.9% of the total runtime which amounts to ≈ 25s in absolute 
timing. For the native data loader case, the relative value is roughly the same with 
16.42% of the total runtime, which, however, amounts to ≈ 47s in absolute timing. 
As expected, when comparing the three ResNet models it is evident that the com-
munication overhead slightly reduces for smaller ResNet architectures, while the 
computation time increases as the size of the ResNet grows. Due to the low scaling 
performance of the native data loader, no evaluations on 1024 GPUs were performed 
for this case.

Accuracy

To investigate the issue of lower accuracy with a larger BS value, the effect of differ-
ent learning rate schedules on the learning rate LR itself and V are explored in Fig. 8 
for the training with ResNet50. The three methods deployed in this case are thestep-
wise, the cosine, and the exponential annealing methods, as described in "Learning 
rate scheduling" section. Fig. 8b depicts the evaluation of V using the different learning 
rate schedules over growing batch sizes. All three scheduling methods have similar 
performances up to BS = 4k (corresponds to 64 GPUs) with the exponential sched-
uling method being slightly worse than the others. At BS = 8k (128 GPUs), the first 
significant drop of V from ≈ 77% to 74% is observed. From BS = 16k (256 GPUs), the 
quantity V drops consistently to lower values. For all three scheduling methods, there 
is a sharp drop of V for BS = 32k and BS = 65k (512 and 1024 GPUs). The difference 
in V is large for BS = 65k , where V ≈ 52% , V ≈ 41% , and V ≈ 31% for the exponen-
tial annealing, step-wise, and cosine annealing scheduling methods, respectively. It is 
interesting to observe that the exponential scheduling method outperforms the cosine 
annealing for BS = 32k and also the step-wise scheduling method for BS = 65k , even 
though exponential scheduling starts with the worst V value even for BS = 256 . It is 
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evident that none of the scheduling methods can avoid the drop in V for trainings with 
large BS values, however, a training with the exponential learning rate schedule is the 
most favorable for large BS. Figure 9 depicts the validation accuracy curves over the 
number of epochs for an exemplary training of a ResNet50 with BS = 65k with the 
three different learning rate schedules. While the learning curves show similar behav-
iour for the first 20 epochs, the exponential schedule outperforms the other two in the 
following 70 epochs by large margin.
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(a) Learning rate LR variation over epochs using different learning rate scheduling
methods including warm-up in first five epochs (on 1,024 GPUs).
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(b) Validation accuracy V for different learning rate schedulers with increasing
batch size BS. Average over 3 runs.

Fig. 8 Analysis of different learning rate schedulers for ResNet50 training, showing learning rate over 
epochs (a) and validation accuracy over batch size (b). Note the original learning rate LR of 0.025 is scaled 
with the number of GPUs
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Summary, conclusion, and outlook
In this study, three distributed DL frameworks, i.e., PyTorch-DDP, Horovod, and Deep-
Speed were analyzed in combination with the DALI and native PyTorch data loader 
on the JUWELS Booster module on up to 1024 GPUs in terms of data throughput, 
the runtime, and the scaling performance. For this analysis, the ResNet50, ResNet101, 
and ResNet152 architectures were trained on the ImageNet dataset. Furthermore, the 
impact of the batch size on the validation accuracy and the effect of different learning 
rate scheduling methods were investigated for training a ResNet50.

The superiority of the DALI data loader over the native framework-based data 
loader in terms of scaling performance was evident. A parallel efficiency of over 0.85 
on up to 256 GPUs and over 0.75 on 1024 GPUs for training ResNet50 was achieved. 
This value was over 0.80 on 1024 GPUs for training ResNet101 and ResNet152. It can 
be concluded that DALI is well suited to be used in large-scale distributed machine 
learning setups, regardless of the underlying framework or size of the neural network. 
Comparatively, the native PyTorch data loader could only achieve an efficiency of 0.45 
for a training with 512 GPUs, hence, an even lower number of GPUs.

As the global batch size has to be increased with the number of GPUs, the good 
scaling performance can only be reached with a large global batch size, leading to a 
reduction in validation accuracy of the training. Even though no solution exists to 
address this problem, this work has shown that some mitigation was possible through 
choosing the right learning scheduling methods. An exponential learning rate sched-
uling method showed the best performance in terms of validation accuracy for a large 
batch size of 65k on 1024 GPUs for training ResNet50, whereas for smaller batch sizes, 
the cosine or step-wise annealing scheduling methods achieved better accuracies.

Overall, the total training time was reduced from ≈ 13 h on 4 GPUs to ≈ 200 s on 
1024 GPUs for training ResNet50 (234 times faster) and ≈ 17 h to ≈ 300 s for the 
Resnet152 case (204 times faster), respectively. This good scaling behavior proves the 
combined power of distributed DL and HPC when using the right tools and meth-
ods. Such short training times enable the developers to focus more on code and 
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Fig. 9 Validation accuracy V over the number of epochs for a ResNet50 training with BS = 65k on 1024 GPUs 
with different learning rate schedulers
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hyperparameter tuning, leading in the end to better models. In summary, research-
ers should scale their training with the usage of Horovod or PyTorch-DDP to as much 
GPUs as possible, until the degradation of the accuracy sets in.

There exist other distributed DL frameworks that could be analyzed in terms of per-
formance on large HPC systems. Furthermore, on the hardware side, different pro-
cessor architectures that are tailored for machine learning, e.g., TPUs or Graphocore 
IPUs [49], are emerging and will undoubtedly play a key role in distributed DL. In the 
future, these developments will be further investigated.

The issue with the accuracy drop for large batch sizes also requires further atten-
tion. Other promising techniques apart from learning rate scheduling methods 
include novel optimizers, e.g., NVLAMB [50]. A comprehensive hyperparameter tun-
ing routine, which includes other optimizer-related parameters, such as weight-decay 
rate or momentum can also impact the performance.

While this work evaluated the data loaders and frameworks already at large scale, 
further scaling tests are needed for even bigger systems, e.g., Exascale machines. 
Therefore, larger datasets and more complex models will be required. Other model 
architectures such as Autoencoders or Transformers have shown great success on 
various tasks and hence might be a good choice.

Future directions of general big data research include developing more efficient and 
adaptive distributed DL algorithms to handle heterogeneous data sources, reduce 
storage and communication overheads in HPC systems, and perform energy effi-
ciency training of DL models on massive datasets.
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