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Abstract 

Big data has a substantial role nowadays, and its importance has significantly increased 
over the last decade. Big data’s biggest advantages are providing knowledge, support-
ing the decision-making process, and improving the use of resources, services, and 
infrastructures. The potential of big data increases when we apply it in real-time by pro-
viding real-time analysis, predictions, and forecasts, among many other applications. 
Our goal with this article is to provide a viewpoint on how to build a system capable of 
processing big data in real-time, performing analysis, and applying algorithms. A sys-
tem should be designed to handle vast amounts of data and provide valuable knowl-
edge through analysis and algorithms. This article explores the current approaches and 
how they can be used for the real-time operations and predictions.

Keywords: Big data, Time series, Stream processing engines, Forecasting, Anomaly 
detection, Machine learning

Introduction
The concept of big data was mentioned for the first time in a paper published in 1997 [1]. 
The authors called the problem of dealing with large data sets, “the problem of big data”. 
These large data sets were characterized by not fitting in the main memory, making it 
challenging or even impossible to analyze and visualize them. Even 25 years later, most 
computers cannot load 100 GB to memory, let alone process it.

In the current era in which data is produced at high rates, information has a decisive 
role, and most computers cannot process vast amounts of data; thus, it was necessary to 
create new ways to process the data. These aspects were the big impulse for the appear-
ance of big data technologies.

The first approach to deal with big data sets was to divide them into smaller segments. 
However, even then, the segments could be very large in most cases. Besides, few com-
puters were able to make this type of processing. To tackle this issue, frameworks started 
to appear to deal with batches of data. Nevertheless, none of these approaches deals with 
one big problem: what can be done if the data set keeps growing, and data continues to 
be received over time? To answer this question, several frameworks that deal with data 
streams have appeared.
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The main goals of using big data are: (1) predicting future events, and (2) gaining 
insights and discovering relationships; in multidimensional and large sample-sized data-
sets [2]. However, these goals bring challenges in terms of computation and methods.

Predicting future events is also known as forecasting. Forecasting tasks foresee 
dealing with time series data. Processing and analyzing time series data in real-time 
can be a game-changer for an organization. This article will focus on time series data. 
Three tasks stand out on the analysis and prediction of time series data: monitoring, 
forecasting, and anomaly detection. These tasks benefit from being executed in real-
time. Moreover, these tasks can be applied to many contexts and use cases. Therefore, 
it is important to use a streaming framework to process data as it arrives.

Anomaly detection in data streams is beneficial and essential for organizations to 
detect problems before they achieve more significant dimensions: for instance, to notice 
an intrusion before the intruder can steal or damage data. Another example is to detect 
unexpected traffic congestion and activate the responsible authorities. Therefore, the 
anomaly prediction connected to time series data will also be dealt in this article.

Using data streams in different contexts allows us to extract knowledge and make 
decisions in real-time (or near real-time). This article will explore how we can deal 
with big data, particularly, time series big data. This article will also analyse which 
algorithms can be applied to data to make forecasts and detect anomalies.

The main contributions of this work can be summarized as follows:

• A comparative analysis of Stream Processing Engines (SPEs), including their char-
acteristics and provenance, processing techniques, delivery of events, perfor-
mance, and popularity.

• A discussion on forecasting algorithms, including statistical and Machine Learn-
ing (ML) algorithms, and the advantages and disadvantages of using each type of 
algorithm.

• A discussion on anomaly detection algorithms, the challenges of working with 
datasets containing anomalies, and the methods used to detect anomalies, such as 
statistical and ML approaches.

A comparative analysis of SPEs led us conclude that Spark is the most popular frame-
work; however, Flink is better for data-intensive applications, and Heron scales bet-
ter. Forecasting and anomaly detection methods bring value to organizations. While 
forecasting can allow better management of resources, anomaly detection can miti-
gate and eliminate problems. Regarding the type of methods used, statistical methods 
are usually lighter and more explainable, while machine learning methods are better 
when we have  complex hidden patterns. The most recent published papers show a 
preference for deep learning techniques.

Motivation

Working with huge amounts of streaming time series data can be a challenging task. 
With this in mind, we want to guide the reader on how this can be achieved. We will 
focus on three key relevant aspects: 
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1. Stream processing frameworks: these frameworks enable to process huge amounts 
of data, perform analysis, and apply algorithms in real-time.

2. Forecasting algorithms: these algorithms allow to predict future events. Therefore, 
they are essential for many organizations to perform informed decisions, manage 
resources, improve services, among others.

3. Anomaly detection algorithms: these algorithms allow to identify abnormal or unu-
sual patterns. They can be early symptoms of something wrong, and we should be 
careful. They help us to improve security, quality, and efficiency.

Although the main focus of this work is the literature review on streaming frame-
works, since we aim to work with time series data, we will also review the forecasting 
and anomaly detection algorithms; they play a crucial role in taking advantage of real-
time processing capabilities. Therefore, with this survey, we aim to: 

1 Identify the most relevant state-of-the-art regarding both data streams and algo-
rithms.

2 Evaluate and compare different frameworks and methods to highlight each method 
or framework’s strengths, weaknesses, and limitations and when they should be 
applied.

3 Provide a guide for future research by identifying gaps in the current literature, areas 
that need further investigation, and other opportunities.

Related work

This subsection provides an overview of other related surveys presented in the literature. 
Table 1 summarizes the subjects mentioned in the works presented in this article, both 
surveys and research works. In this section we will address the survey articles.

This article presents a literature review on how to process huge amounts of time 
series that are continuously being produced over time and need to be processed in 
real-time. Therefore, in Table 1, we consider papers regarding big data, stream pro-
cessing, real-time processing, machine learning and deep learning, forecasting, and 
anomaly detection. In addition, we revised both surveys and research articles. Unfor-
tunately, to the best of our knowledge, we did not find a paper analyzing all these top-
ics. Nevertheless, we will compare our study with the most relevant works.

The most significant difference with work [9] regarding big data streams is that the 
authors of work  [9] compared several tools, technologies, methods and techniques 
regarding data streams. However, we are more focused on data stream processing 
frameworks. In addition, the authors of  [3] also discussed the concept of real-time 
associated with the processing of data streams, while the authors of  [10] only per-
form a brief comparison of streaming processing frameworks. The authors of [10] 
conducted some practical evaluations of the streaming processing frameworks. Our 
survey presents a literature review. Similar to the work presented in [11], we are also 
researching progress in big data-oriented stream data mining; however, we focus on 
time series related problems, namely forecasting and anomaly detection.
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Article structure

The remainder of this article is organized as follows. "Big data stream processing frame-
works" section is focused on big data and data stream processing frameworks. It starts by 
discussing the problem definition, followed by existing solutions, it presents the elabora-
tions and a summary. This section characterizes big data and discusses its relationship with 
data streams, forecasting methods, and anomaly detection. We also present frameworks 
for processing data streams, compare them, and discuss some example cases where each 
one can be applied. Next, "Analysis and algorithms for streaming data" section discusses 
algorithms that can be applied in the context of big data, namely forecasting concepts and 
methods ("Time series forecasting" section) and anomaly detection strategies ("Anomaly 
detection" section). In this section, we focus on statistical, ML, and Deep Learning (DL) 
methods and their advantages and disadvantages. Each of these 2 sections presents a simi-
lar organization. Finally, "Conclusions and future research directions" section presents the 
conclusions and the challenges envisaged for future work, as well as some future research 
directions.

Big data stream processing frameworks
Problem definition

The evolution of traditional systems to streaming systems brings new processing and 
analysis capabilities and challenges. Firstly, we are no longer limited to bounded data, 

Table 1 Related work: summary

References Big 
Data

Stream 
Processing

Real-
time

ML & 
DL

Forecasting Anomaly 
Detection

Survey Research 
article

No. of 
papers

[3] X X X X 1

[4] X X X X 1

[5, 6] X X X X X 2

[7] X X X X 1

[8–12] X X X 5

[13] X X X 1

[14] X X X X 1

[15, 16] X X X 2

[17] X X X 1

[2, 18–20] X X 4

[21, 22] X X X X X 2

[23, 24] X X X 2

[25] X X X X 1

[26] X X X 1

[27–32] X X 6

[33–35] X X 3

[36, 37] X X X X 2

[38] X X X X 1

[39–44] X X X 4

[45–53] X X X 9

[54–57] X X X 4

[58–77] X X X 20

No. of 
papers

19 26 8 45 12 33 31 43 74
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since we can process bounded and unbounded data. We are no longer required to divide 
or process data into multiple steps. Usually, a single step is enough. Besides, we no 
longer have to wait long periods for data to be processed. As we receive data, we process 
and obtain results and insights.

Designing the architecture of an application is an important task that should be well 
thought out. Considering that the streaming processing is part of an entire system, as a 
first step in the deployment of this component, the system requirements should be ana-
lyzed and task prioritization shall be evaluated. Choosing a SPE is not different. Some of 
the desired requirements that might be considered for real-time data stream processing 
are:

• Process large volumes of data;
• Integrate data from multiple data sources;
• Deal with data with different properties (multi-dimensional data, multiple entities, 

spatial-temporal dependencies);
• Deal with bounded and unbounded data streams;
• Deal with unsorted data, or delayed data;
• Detect data anomalies;
• Computation performance metrics (low latency, high throughput, high availability, 

high scalability).

As we stated before, the true value of big data comes from taking insights from the data 
and helping decision-makers. Therefore, efficient and precise algorithms implemented 
on scalable frameworks are needed to explore the data potentials. If we consider ML 
and DL in our analysis, we might add the model performance (error and training time) 
to the list. In the context of forecasting, metrics such as the Mean Squared Error (MSE) 
or R2-Score can be useful  [38]. In the case of anomaly detection, we may choose a 
high accuracy, high precision or even high recall method [16]. Since explanations play 
a crucial role in decision-making, the explainability of the ML model should also be 
considered [78].

There are several SPEs. Each SPE provides different features and has different proper-
ties. Moreover, each one can be more or less adequate according to the application.

Big data

The concept of big data has evolved through the years. First, big data started being 
depicted as a massive amount of data that does not fit in the main memory and requires 
more sophisticated ways of processing and visualizing [1]. This definition remains true; 
however, it is incomplete, since it is always being updated due to the data explosion [18] 
that occurred during the last decades. Defining big data is not a simple task because of its 
complexity. Figure 1 summarizes big data characteristics, challenges and opportunities.

As previously mentioned, this massive amount of data is characterized by massive 
sample size and high dimensionality [2]. Besides, data can arrive at high velocities and 
different flow rates  [19]. Moreover, data can come from different sources  [2], making 
it more complex. Data stream frameworks can receive data from multiple sources and 
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process huge volumes of data, continuously arriving at high velocities. Several factors 
increase the complexity of dealing with big data, such as the variety of data that can be 
received [19]. For example, we can receive numerical values, text, images, sounds, video, 
or a combination of more than one type. In addition, our data can have a temporal com-
ponent that brings additional complexity to the problem.

The maximum potential of big data is achieved when we trust the data and take advan-
tage of it by analyzing it. Thus, we must identify inaccurate and uncertain data and deal 
with it [19]. In this context, the importance of anomaly detection methods is highlighted, 
especially the real-time detection of anomalies in data streams to mitigate anomalies as 
soon they happen.

Some of these characteristics bring statistical, computational, and visualization prob-
lems. For example, we can have algorithm instability, noise accumulation, spurious 
correlation, incidental endogeneity, and measurement errors regarding statistical prob-
lems  [2]. On the other hand, regarding computation problems, we have storage, scal-
ability, and bottleneck problems  [2, 79]. Finally, visualization can be complex or even 
impossible when we have high-dimensional data.

Statistical problems can bring dangerous consequences, since they can lead to wrong 
statistical inferences or false scientific discoveries. For instance, an excellent example of a 
spurious correlation is the strong correlation (99.79%) between “US spending on science, 
space, and technology” and “Suicides by hanging, strangulation and suffocation” [80]. As 
we can understand, these two phenomena are unrelated. This is a well-known phenom-
enon in statistics, meaning that correlation does not imply causality. However, spurious 
correlations can go unnoticed depending on the context and the available knowledge.

To summarize, big data requires demanding computational resources, and its poten-
tial is unlocked through trust in data analysis. Therefore, several streaming frameworks 
emerged to process big amounts of data with low latency, high throughput, and high 
scalability. Furthermore, anomaly detection methods are essential in data streams [19], 
since they can suffer security attacks, have malfunctioning devices, or something unex-
pected may occur. We can also execute these methods in batch; however, when applied 
to real-time streaming data, they achieve their full potential. Besides, big data allows to 

Fig. 1 Big data taxonomy—information collected from [2, 5, 15, 17, 19]
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(1) forecast future events, and (2) gain insights and discover relationships in data  [2], 
both being important tasks, especially for decision-makers.

Big data analysis, forecasting, and anomaly detection are achieved through statisti-
cal, machine learning, or deep learning methods. Note that deep learning is a subset 
of machine learning. Figure  2 depicts Google searching trends through the years, by 
keywords. Big data, machine learning, and deep learning have a growing trend over 
the years. On the other hand, anomaly detection had a very soft increase. The search-
ing trend forecasting decreases and reaches its peak in 2022; however, we can use other 
terms to express forecasting, such as prediction. Note that Google trends do not allow 
complex queries.

We can apply big data to a vast amount of scientific fields. We will present examples 
of use cases and applications for analyzing time series data streams in real-time. We will 
also include some examples that benefit from forecasting or anomaly detection methods.

In finances and economics, monitoring the stock market, detecting fraud, or forecast-
ing the performance of assets, are high relevant tasks. In [25], the authors used Artifi-
cial Neural Network (ANNs) and data streams to forecast stock prices. Monika Arya 
et al. [21] proposed a real-time method to detect credit card fraud in data streams, using 
ANNs with ensemble trees.

Regarding health care and well-being, monitoring patients and having real-time 
processing capabilities can save lives. For instance, Leo Kobayashi et al.  [82] created a 
patient monitor system using streams and multimodal data fusion. Their approach 
allowed them to analyse the data, conduct experiments and develop and apply algo-
rithms. Another interesting application is to monitor and forecast the spread of infec-
tious diseases. For instance, Ensheng Dong et al. [83] created an interactive dashboard to 
monitor COVID-19 using data streams.

We can also find works that benefit from using frameworks to process data streams 
in informatics and communications, such as monitor resource usage or detect security 
attacks. In [4], the authors propose an internet traffic monitoring system using stream-
ing frameworks. And in [7], Liu et al. perform resource management and scheduling.

Other main areas with big data characteristics are smart cities and industry 4.0. One 
significant advantage is that they allow the creation of living labs, creating a space for 
learning and innovation. We can find several works to monitor and improve urban 
mobility, monitor water consumption and detect water leaks [84], and forecast traffic 

Fig. 2 Google research trends over time—data collected from [81]
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flow [38], among many others. Leonhard Hennig et al.  [23] built a system to extract 
mobility and industry events from data streams. Qinglong Dai et al. [13] used a data 
stream framework with customized changes to process data from smart grids. Still, in 
the context of energy systems, Philsy Baban [24] could process and validate real-time 
streaming data. In [8], Sahal et al. discussed streaming frameworks and other tools to 
perform predictive maintenance for railway transportation and wind energy.

As can be observed, we can find big data applications in several different fields. 
Society can benefit greatly from big data; however, big data can also be dangerous. In 
this article, we will not explore the “dark side” of big data. For instance, it can serve 
for mass surveillance and persecution or increase the disparities among minorities. 
However, we hope that governments and institutions use big data for good. In this 
context, it emerged a new research area: “fair AI”, whose biggest goal is to combat rac-
ism, sexism, and other types of discrimination against minorities [85].

Real‑time data stream processing

We use the term “big data” to define huge amounts of data [1] and the term “stream” 
to express data continuously being created and arriving [86]. This data can come from 
different sources and have different formats; its processing is not always trivial, espe-
cially if it is required in real-time.

Big data applications can have five types of components: data sources, a messag-
ing platform, a processing module, a storage mechanism, and a presentation module. 
The data sources can be, among others, Internet of Things (IoT) sensors and social 
networks. These sources of information usually come from users, devices or activ-
ity logs. The messaging platform is responsible for sending data between modules. 
The processing module can be a streaming processing framework to ensure real-time 
processing capabilities. The storage mechanism can be a database or a data ware-
house. Processed data can be presented in different ways, such as a web application, 
a mobile application, and a technical report. Figure 3 depicts the components of big 
data applications.

Fig. 3 Big data applications components
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Existing solutions

Fundamental concepts

In "Problem definition" we mentioned application requirements that can restrict the 
choice of a SPE. Now, we will discuss fundamental concepts that make it possible to 
have different data-processing techniques.

We may consider three types of processing: batch-based, stream-based, or event-
based  [87]. Batch processing is characterized by processing bounded data streams 
with a beginning and an ending. On the contrary, stream processing is characterized 
by the processing of unbounded data streams that do not have a known end. Besides, 
the data processing is performed as data arrives. If our application requires that we 
generate alerts or triggers if our data meets some conditions, we have event-based 
processing.

Concerning the processing model, we also have three types: at most once, at least 
once, and exactly once. At most once processing does not guarantee that the data 
is processed or persisted. In case of failure, we may have to deal with missing data. 
Usually, applications that choose at most once processing are more concerned with 
latency than reliability. On the contrary, at least once processing may process or per-
sist duplicated data, but at least it guarantees that every data is processed or persisted 
at least one time. At last, exactly once processing just processes or persists data once.

Window mechanisms specify how to divide the stream in order to aggregate 
time series data. There are six main processing techniques  [26, 88]. The most basic 
mechanism is the single-pass in which we process each new sample only once. Sev-
eral windowing mechanisms will be discussed. Nevertheless, a windowing mecha-
nism can be defined as a function of the time or the number of events [27]. A sliding 
window mechanism is defined as a window with a fixed size that slides over the data 
stream  [26]. Tumbling windows are non-overlapping sliding windows  [88]. Session 
windows are similar to tumbling windows; however, in session windows, we have a 
gap between windows [88]. In a landmark window, it is specified a sample from which 
the window keeps growing  [26]. This sample can be updated from time to time. At 
last, the damped window mechanism uses a fading mechanism in which, the most 
recent samples have a bigger weight, and, as time goes by, the samples loose their 
weight [26]. Figure 4 represents some of these window mechanisms.

Regarding stream-based processing, its methods can be considered stateless or 
stateful. If the processing is stateless, then the state is not preserved. We can use state-
ful processing if we want to know how many people buy a specific game per month. 
On the other hand, if the state is retained, the processing is stateful. This can be use-
ful to measure how many people buy the game over time in a commulative maner.

Fig. 4 Processing window mechanisms
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Data processing frameworks

As aforementioned, we will discuss and compare different SPEs. We selected six SPEs: 
Apache Spark, Apache Flink, Apache Storm, Apache Heron, Apache Samza, and Ama-
zon Kinesis. Besides, we decided to include Apache Hadoop for historical reasons.

Hadoop1 was the first framework that appeared to process large datasets using the 
MapReduce programming model. Hadoop is very scalable, since it can run on a single 
cluster, in a single machine, or spread on several clusters in multiple machines. Moreo-
ver, Hadoop takes advantage of distributed storage to improve performance by transmit-
ting the code that processes the data instead of the data [89]. Besides, Hadoop provides 
high availability and high throughput. However, it can have efficiency problems when 
dealing with small files.

The major drawback of using Hadoop is that it does not support real-time stream pro-
cessing. To deal with this problem, Apache Spark emerged. Spark2 is a framework for 
processing batch and streaming data, and allows distributed processing. According to 
Matei Zaharia  [90], the creator of Spark, Spark was designed to respond to three big 
problems of Hadoop: 

1 Avoid iterative algorithms that make several passes through the data;
2 Allow real-time streaming;
3 Allow interactive queries.

Instead of MapReduce, Spark uses Resilient Distributed Datasets (RDDs) that are fault-
tolerant and can be processed in parallel. Spark also provides scalability, and since its 
early releases, it has proved to outperform Hadoop [33]. Spark is helpful for data science 
related projects. Besides its main component, Spark provides several libraries for Explor-
atory Data Analysis (EDA), ML, graph analysis, stream processing and SQL analytics.

Two years later, Apache Flink3 and Apache Storm4 were created. While Spark uses 
micro-batches for stream processing, Flink and Storm can perform stream processing 
natively. Flink can process batch and streaming data. In Flink, we can process streams 
with specific temporal requirements. For example, we may consider processing or event 
time. In case of event time, Flink allows to deal with delayed events. Besides, Flink pro-
vides watermark support, allowing a trade-off between latency and completeness of data. 
Storm and Flink are similar frameworks, generating some discussion regarding their dif-
ferences [91] and which of the following stand out: 

1 Storm only allows stream processing;
2 They both can perform stream processing with low latency;
3 The API offered by Flink is more high-level and provides more functionalities;
4 They have different strategies to provide fault tolerance (Storm employs record-level 

acknowledgements while Flink uses a snapshot algorithm).

1 https:// hadoop. apache. org/.
2 https:// spark. apache. org/.
3 https:// flink. apache. org/.
4 https:// storm. apache. org/.

https://hadoop.apache.org/
https://spark.apache.org/
https://flink.apache.org/
https://storm.apache.org/
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Storm is a good streaming framework; however, its capabilities to scale are not enough 
for more demanding applications. Besides this, debugging and managing Storm can be 
complex tasks. In this context, Apache Heron5 emerges, as the successor of Storm. A 
paper published in 2015 [34] announced this transition at Twitter.

Apache Samza6 is a framework that provides real-time processing, event-based appli-
cations, and Extract, Transform and Load capabilities. Samza provides several APIs and 
presents an architecture similar to Hadoop, but instead of using MapReduce, it has the 
Samza API, and it uses Kafka instead of the Hadoop Distributed File System.

Finally, Amazon Kinesis7 is the only framework presented in this article that does not 
belong to the Apache Software Foundation. Kinesis is actually a set of four frameworks 
instead of a data stream framework. In this work, we refer to Amazon Kinesis to talk 
about the Kinesis Data Streams framework to simplify. Kinesis can easily be integrated 
with Flink.

Elaboration

The processing frameworks present different properties, which makes it challenging 
to choose one framework without understanding the differences. Therefore, we should 
choose the framework that suits best our use case.

Firstly, we decided to look at the nature of each framework. Although several frame-
works belong to the Apache ecosystem, most were not created by Apache. They were 
later integrated into the Apache family through The Apache Incubator.8 Table 2 resumes 
the nature of each one of them.

Table  3 contains information about the processing techniques available (batch or 
stream) and the delivery of events (at most once, at least once, exactly once). As we 
already mentioned, Hadoop only provides batch processing. Storm and Heron only pro-
vide stream processing. All other frameworks offer both batch and stream processing. 
However, Spark provides stream processing through micro-batches. Regarding the deliv-
ery of events, most frameworks guarantee that the events are processed exactly once or 
at least once. Heron offers three types of delivery, the two mentioned above and at most 

Table 2 Frameworks characteristics and provenance

Framework Initial release Creator Incubation year Type of software

Apache Hadoop 2006 Apache Software Foundation N.A. Free and open source

Apache Spark 2009 University of California 2013

Apache Flink 2011 Apache Software Foundation 2014

Apache Storm 2011 Backtype 2013

Apache Heron 2014 Twitter 2017

Apache Samza 2013 Linkedin 2013

Amazon Kinesis 2013 Amazon N.A.

5 https:// heron. apache. org/.
6 https:// samza. apache. org/.
7 https:// aws. amazon. com/ kines is/.
8 https:// incub ator. apache. org/.

https://heron.apache.org/
https://samza.apache.org/
https://aws.amazon.com/kinesis/
https://incubator.apache.org/
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once. Besides, these frameworks provide drivers for several programming languages, the 
most popular are Python and Java.

Performance-wise, some experiments have been conducted to compare the different 
SPEs. Note that it is difficult to make a fair comparison due to the lack of experiments 
that contemplate all frameworks. Therefore, we started by a performance comparison 
regarding the frameworks. This comparison considers the information available in the 
official documentation of each framework, which is present in Table 4. One of the most 
important characteristics when choosing a framework is the ability to process infor-
mation in real-time. However, there needs to be a consensual definition of what real-
time means. Gomes et al. [3] focused their study on this concept in the context of data 
streams and big data. According to the authors, there are different intents when discuss-
ing real-time. For example, real-time could mean an immediate response. Another pos-
sibility is the guarantee of low latency: some consider the time the system should answer, 
while others refer the time the system must answer. For a more fair comparison, in this 
discussion, we will focus on real-time as the property of having low latency.

Most of these frameworks present low latency, which is good when we are process-
ing significant amounts of data and want to process it in real-time. Hadoop is the only 
one that is considered to have high latency. All frameworks present high throughput and 
high scalability. However, Hadoop only allows scaling vertically. Regarding fault toler-
ance mechanisms, all frameworks deal with fault tolerance.

Table 3 Framework processing techniques and delivery of events

Framework Processing Delivery of events

Apache Hadoop Batch N.A.

Apache Spark Batch and Stream (micro-batch) Exactly once

Apache Flink Batch and Stream Exactly once

Apache Storm Stream At least once

Apache Heron Stream At most once, at 
least once, exactly 
once

Apache Samza Batch and Stream At least once

Amazon Kinesis Batch and Stream At-least once

Table 4 Performance comparation

Framework Latency Throughput Scalability Fault tolerance

Apache Hadoop High High High Replication in the HDFS

Apache Spark Low High High Resilient Distributed Dataset

Apache Flink Low High High Incremental checkpointing (uses markers)

Apache Storm Low High High Record-level acknowledgements

Apache Heron Low High High High fault tolerance

Apache Samza Low High High Host-affinity, and incremental checkpointing

Amazon Kinesis Low High High High fault tolerance
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After this initial study, we look for works that compare some of these frameworks 
to make an unbiased comparison. In 2015, Namiot et al. [10] made an introductory 
comparison of the properties of Storm, Spark, Samza, Apache Flume, Apache Kafka, 
Amazon Kinesis, and IBM InfoSphere.

Besides the noticeable differences between Hadoop and Spark, Pooja Choudhary 
et  al.  [28] conducted some experiments to compare these two frameworks. They 
concluded that Spark uses more memory than Hadoop, needing less execution time. 
However, the authors of [35] mentioned that Spark might not be the best framework 
if our application requires low latency and high throughput.

The authors of  [29] compared the performance of Spark, Flink, and Storm under 
saturation conditions (the maximum streaming load that the frameworks could 
support without delay). This comparison is insightful if we want to choose the best 
framework for a data-intensive application. Flink presented the highest saturation 
level, while Storm had the worst CPU usage. Even when failure recovery mechanisms 
are activated, Storm performance decreases by 50%, while Flink only decreases 10%. 
Nevertheless, Spark can surpass Flink if we are not concerned with latency.

Inoubli et  al.  [12] performed experiments in which they compared Spark, Storm, 
Flink, and Samza. They observed that Spark achieved the worst processing rates com-
pared to the other three frameworks. Flink and Samza were more efficient, especially 
when messages had a more considerable size. Flink CPU usage was lower; however, 
Flink could outperform Storm if the CPU consumption allowed was increased. Spark 
requires more RAM, less disk access, it is slower in processing messages, and uses less 
bandwidth.

In 2019, in the context of a smart city, Hamid Nasiri et al. [30] evaluated three dif-
ferent frameworks: Spark, Flink and Storm. They started by fixing the input rate and 
compared the performance with two nodes versus eight nodes. With two nodes, 
Flink presented the lowest latency and the highest throughput. Flink delivered a sim-
ilar performance with a slightly higher throughput with eight nodes. The improve-
ments on Spark and Storm were more significant, but Flink was still the best. On the 
other hand, Spark had the worst latency. With eight nodes, Spark presented a similar 
throughput to Flink; however, it reached the highest throughput peaks. They analyzed 
the impact of changing the input rate and the number of worker nodes. We can con-
clude that the performance of Flink is similar to Storm, even when using no acknowl-
edgements in Storm. The most significant difference is the throughput in which Flink 
is better than Storm; however, Storm seems to scale better, and with eight nodes, 
Spark is the best of them all in terms of throughput. At last, they measured CPU and 
network utilization. Flink achieved the lowest CPU utilization and the highest net-
work utilization. Storm and Spark achieved similar performances.

Kolajo et  al.  [9] compared 19 tools and technologies for data streaming; how-
ever, only half of them supported both batch and streaming processing. On another 
work  [31], in 2019, the authors compared the performance of five stream process-
ing systems: Storm, Flink, Spark, Kafka Stream, and Hazelcast Jet. Storm has the 
best memory consumption, and presents good stability. Flink presents the lowest 
latency. Spark presents the highest throughput and has a good compatibility with ML 
libraries.
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In 2020, LinkedIn published a post  [92] showing some improvements performed on 
Samza. These improvements provided Samza with more considerable throughput capa-
bilities when compared with Flink.

Later in 2021, Krzysztof Wecel et al. [32] selected six frameworks, but has chosen to 
focus their analysis on comparing Spark and Flink. They concluded that Spark is more 
memory efficient while Flink is more CPU efficient. The authors also mentioned that, 
while performing their experiment, they found a problem that led to delays in the imple-
mentation phase: missing detailed documentation. We were already aware of this prob-
lem, especially with Flink.

Heron brings an extensive set of advantages to users that want to transit from Storm 
to a more scalable framework. The API available for Heron is compatible with the one 
available for Storm. Heron requires fewer resources (less CPU usage) and provides per-
formance improvements (more throughput and less latency). Currently, Heron is in the 
incubating phase at The Apache Incubator [93].

To understand the frameworks popularity, we decided to perform two experiments 
using Scopus.9 These experiments were performed on August 9th, 2022. In the first 
experiment, we try to understand the popularity of the different frameworks over the 
years. In the second experiment, we try to perceive how many publications exist when 
we consider different criteria.

For the first experiment, we created three queries. The example below contains the 
queries for the Apache Hadoop framework. Similar queries were performed for the 
remaining frameworks. 

Q1  apache w/ hadoop
Q2  TITLE-ABS-KEY (apache w/ hadoop)
Q3  TITLE-ABS-KEY (apache w/ hadoop) AND (LIMIT-

TO (SUBJAREA,“COMP”) OR LIMIT-TO (SUBJAREA,“ENGI”))

Firstly, we perform a general search using only the framework’s name. Secondly, we 
restrict papers with the framework’s name in the title, abstract or keywords. Lastly, we 
limit the subject area to papers published in the engineering field or computer science.

Figure  5 contains the results of the first query. We can visualize that Hadoop is the 
dominant framework in the first years. This happens because Hadoop is the oldest, 
and most frameworks did not exist or did not belong to the Apache Software Founda-
tion at the time. The most popular streaming framework is Spark. Following Spark, the 
popularity of Flink and Storm is similar. Finally, Heron, Samza and Kinesis are the most 
unpopular frameworks.

Figure 6 presents the results of the second query. When we restrict papers with the 
framework’s name in the title, abstract or keywords, we can visualize that Spark is the 
dominant framework. This might indicate that most papers that mention Hadoop only 
mention it because it was the first relevant framework. Another explanation is that 
Hadoop is the framework used in the study, but was not the subject of the study. There-
fore, this second query is more focused on studying the framework, not its usage.

9 www.scopus.com.
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What we can visualize in Fig. 6 is intensified in Fig. 7 when we limit the subject area. 
Figure 7 shows the results of the third query.

In the second experiment, we evaluate the number of papers that considered stream-
related concepts and algorithms. Our goal is to understand, for instance, how many 
articles that addressed forecasting also addressed streams. We started with two basic 
queries. First, query 4 helps to understand how many papers contain the word forecast 
or other words derivated from the word forecast, such as forecasting or forecasts. Query 
5 helps to understand how many papers include anomaly detection or outlier detection. 
Query 6 is an additional query to understand how many papers also include ML or DL. 

Q4  forecast*
Q5  (anomaly w/ detection) OR (outlier w/ detection)
Q6  (machine w/ learning) OR (deep w/ learning)

Figure  8 contains the results for forecasting terms. We start by performing query 
4, and we named forecast-term. Then, we also included query 6, which we called 

Fig. 5 Data processing frameworks: Popularity over the years first query

Fig. 6 Data processing frameworks: Popularity over the years second query

Fig. 7 Data processing frameworks: Popularity over the years third query
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ML-term. Then, we selected only the papers that had both terms in the title, abstract, 
or keywords. The next step was to limit by subject area (as in the first experiment). 
Then, we limited the search by the years from 2012 until 2023. Finally, we included 
different terms in order to answer our initial question. We separated the terms stream 
and the several frameworks. As we can visualize, we started with 1.5 million papers, 
and in the end, only 1 thousand had terms related to streams.

Figure  9 contains the results for anomaly detection. The only thing that changed 
with Fig.  5 was the initial term that, in this case, was the anomaly detection term, 
query 5. As we can visualize, we began with 136 thousand papers, and in the end, only 
five hundred had terms related to streams.

Only a few papers consider streaming and forecasting concepts because a forecast-
ing algorithm, to provide the most benefits, should perform real-time forecasting. 
Moreover, given the complexity of implementing a stream-based forecasting system 
and a forecasting algorithm, researchers can be more focused on developing one of 

Fig. 8 Forecast versus Stream

Fig. 9 Anomaly detection versus Stream
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these tasks when they publish their work. The same can be applied to anomaly detec-
tion concepts and other applications.

Summary

Choosing the best SPE is a critical engineering task that should consider the following. 
Foremost, only Spark, Flink, Samza and Kinesis allow both batch and stream process-
ing. In addition, Spark and Flink do not allow missing or repeated data. However, Heron 
enables the choice of any delivery. Flink is the best framework for data-intensive applica-
tions, presenting the lowest latency and highest throughput. However, Storm seems to 
scale better. Recent studies have proven that Samza has a better throughput than Flink, 
and Heron scales better than Storm. Nevertheless, Spark and Storm are the most popu-
lar stream frameworks. Heron is a good substitute for Storm, allowing Storm users to 
transition easily.

Analysis and algorithms for streaming data
In the scope of ML, several tasks can take advantage of streaming technologies, such as 
regression, classification, clustering, forecasting, anomaly detection, and frequent pat-
tern mining.

In this section, we decided to focus on two tasks related with time series: forecast-
ing ("Time series forecasting" secrtion) and anomaly detection ("Anomaly detection" 
section).

Time series forecasting

Problem definition

Humans are constantly trying to predict the future. Millions of years ago, when we 
started counting time, we also began to make predictions. One of the questions that 
most hunt humanity, and that several societies, religions and individuals tried to guest, 
is when doomsday will occur. Several dates have been proposed over the years, but until 
now, none of them has been correct.

Forecasting is a prediction task in which we try to predict future events accurately. 
To make good forecasts, we should understand the phenomenon and the causes that 
influence the phenomenon. We can use historical data, events that may occur, and other 
information that may contribute to the forecasting task [94]. For example, when we look 
at the sky and see dark clouds, we can (most certainly) guess it will rain.

Accordingly, with the domain of our problem, we should look for data other than the 
phenomenon’s data. For instance, Wasiat Khan et al.  [45] used data from social media 
and financial news to predict the stock market’s performance. However, the authors rec-
ognize that not all stocks are influenced the same way. Besides, the authors noticed that 
some stocks were more influenced by social media news, while others were more influ-
enced by financial news. Ahmad Ali et al. [46] considered the spatial-temporal depend-
encies and several temporal patterns (current, daily, and weekly) to predict crow flows. 
The use of external factors, such as weather conditions, holidays, and events was also 
crucial in this context.

Forecasting tasks can be classified as short, medium or long-term forecasts [94]. These 
terms are used if the forecast is made for the near future, medium future or distant 
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future. For instance, we may want to predict how many people will travel to a tourist 
destination in the next hour, in the next week, or in the next year.

Usually, short-term forecasting is only relevant in a short interval. Therefore, we might 
benefit from performing the forecasting in real-time or near-real-time. On the other 
hand, medium and long-term forecasting is not needed immediately; therefore, we can 
perform them offline.

Forecasting problems use time series data. A time series is the evolution of one vari-
able (or more) over time. A time series is a stochastic process, time-indexed, thus mak-
ing statistical properties relevant. When we only have one variable, we have a univariate 
time series. We have a multivariate time series when we have more than one variable. 
Usually, when we are in the presence of a univariate time series, we call it a time series 
[94–96].

Time series data is similar to streaming data, since we can look at the data arriving 
from the streaming with a temporal component and a sequential order. However, this 
does not mean that all data from streams are time series, even though they might have a 
timestamp associated.

Existing solutions

There are three types of forecasting methods: historical, statistical, and ML. Histori-
cal methods only look at past values to forecast new ones. The most popular historical 
method is the Historical Average (HA), which can be found in the literature [47], espe-
cially as a baseline. Statistical methods are mainly based on the Auto Regressive (AR) 
method. They are also considered usually as a baseline. For instance, we can find Auto 
Regressive Integrated Moving Average (ARIMA) in work [47]. ML approaches, particu-
larly DL, have been highlighted more recently, and several novelty methods have been 
proposed.

We can find forecasting works related to energy consumption and pricing. Bangzhu 
Zhu et  al.  [48] used an SVM-based method with mixture kernels to forecast carbon 
prices. Razak Olu-Ajayi et al. [49] predicted the energy consumption of buildings using 
ML and DL models, and concluded that ANNs are more suitable to make predictions. In 
[50], Zhang et al. proposed a Multi-view Ensemble Learning Model (MELM) to forecast 
traffic of base stations to save power in cellular networks. Their multi-view methods had 
four views: a temporal, a spatial, one dedicated to events, and the last view for residual 
information. For the temporal component, they analyzed the auto-correlation, the trend, 
and the seasonality of the data, and they used the Seasonal Auto Regressive Integrated 
Moving Average (SARIMA) to perform short and long-term forecasting. They used a 
spreading model based on a grid system to observe and capture the spatial dependen-
cies. The authors observed that different regions have a different number of users, and 
they observed mobility transferring from nearby regions. They used a decision tree to 
capture the influence of events, since they cause changes in traffic. They considered four 
types of events (holidays, weather, concerts, and news). For the residual information, 
they used a top-k regression tree.

Another explored topic is related to traffic. To predict the flow of crowds, in [51] it is 
proposed a framework called Forecasting Citywide Crowd Flows (FCCF). The authors 
used human mobility data, weather conditions, and road network data. First, they 
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divided the human mobility data into two edge flow categories: inflow and outflow. 
Besides that, they split the region into small regions. Then, they decomposed the flows 
into seasonal, trend, and residual and built a model for each one of the flows. For the 
seasonal and trend components, they created an Intrinsic Guassian Markov-Random-
Field (IGMRF) for each component. For the residual, they explored the spatiotempo-
ral dependence and built a spatiotemporal residual model that uses a Bayesian network. 
Then, the models were aggregated to give the final prediction.

The authors in [52] proposed a multi-view network model called Deep Multi-View 
Spatial-Temporal Network (DMVST-NET). They observed that, in most cases, including 
a region that presents a weak correlation with the region we want to predict decreases 
the model’s performance. Usually, distant regions are less correlated, but this is not 
always true. Considering this all, the authors chose to create three views: a view for the 
temporal component, another for the spatial component (they only consider nearby 
regions), and the last one for semantic relations (the regions are far away but present 
similar demands). They used a Long Short-Term Memory (LSTM) for the temporal 
component, a Convolutional Neural Network (CNN) for the spatial component, and a 
Graph Neural Network (GNN) to capture the semantic relations.

In [53], the Multi-Task Learning Temporal Convolutional Neural Network 
(MTLTCNN) method is proposed for short-term passenger demand prediction. The 
authors started by using a Spatio-Temporal Dynamic Time Warping (ST-DTW) algo-
rithm to select the most relevant features. The proposed method is multi-task, having 
one task per region. Each task comprises a Temporal Convolutional Neural Network 
(TCNN), and the tasks share information between them, namely spatiotemporal cor-
relations. Ahmad Ali et al.  [46] proposed an ANN model based on graphs and convo-
lution to predict crowd flows. In addition, they explored spatiotemporal dependencies 
and external factors. The authors of  [47] proposed an architecture that uses graphs, 
convolution, and recurrency to forecast traffic. Their approach explores spatiotemporal 
dependencies.

In 2018, Spyros Makridakis et  al.  [39] published the results of the fourth edition of 
a forecasting accuracy competition. This competition discouraged the submission of 
complicated ML models that required high computational capabilities. Most of the best 
methods were combinations of statistical models. One of the best methods was a hybrid 
ML (using Recurrent Neural Network (RNN)) and a statistical approach (exponential 
smoothing). Unfortunately, some of the submitted methods were based only on ML and 
achieved the worst results. Later in 2021, Spyros Makridakis et  al.  [40] published the 
results of the fifth edition of the forecasting accuracy competition. The goal was to pre-
dict the sales of a retail company represented by 42.840 time series. Most of the compet-
itors used LightGBM-based methods, a ML method based on trees. In the top five, the 
first two top methods were essentially a weighted combination of LightGBM models, the 
third winner was a weighted combination of a Neural Network (NN), the fourth place 
was a non-recursive LightGBM, and the fifth was a recursive LightGBM.

A literature review on deep learning methods for financial time series forecast-
ing  [43] presented eight methods commonly used: Deep Multi Layer Perceptron 
(DMLPs), RNNs, LSTMs, CNNs, Restricted Boltzman Machines (RBMs), Deep 
Belief Networks (DBNs), Autoencoders (AEs), and Deep Reinforcement Learning 
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(DRL). The authors highlight the preference of researchers in using RNNs, specially 
LSTMs, with financial data. However, as the authors identified, CNNs and Graph-
based networks still need to be explored when using financial data. Meanwhile, Mas-
ini et al. [44] reviewed both ML and DL methods for financial forecasting; their main 
focus was NN, regression trees, bagging, and regression. The authors emphasized the 
use of ML models (including DL models) in the presence of large datasets.

Table 5 resumes the revised works. In this comparison, we did not include the sur-
vey articles. As we can visualize, different approaches emerged over the last years for 
both ML and DL methods. Most of the authors used more than one metric to com-
pare the methods.

Fig. 10 Forecasting methods

Table 5 Comparison of forecasting methods

TM Type of model
PM Proposed Method
MV Multivariate

TM Method Year PM MV Metrics Notes

ML MELM, based on SARIMA, and 
on a top-K regression tree 
method

2017 [50] Yes ARMSE

FCCF, based on Bayes Networks 
and Gaussian Markov random 
fields

2016 [51] Yes RMSE

Based on LSSVM, and mixture 
kernels

2022 [48] Yes MSPE, MAPE, RMSE

Weighted combination of 
LightGBM models

2021 [40] Yes WRMSSE The best method of the M5 
competition.

DL DMVST-Net, based on LSTMs 
and CNNs

2018 [52] Yes MAPE, RMSE The authors included a view for 
semantics.

Hybrid approach of exponential 
smoothing with RNNs.

2018 [39] Yes sMAPE The best method of the M4 
competition.

MTL-TCNN, based on Temporal 
Convolution, Convolution, and 
DTW

2020 [53] Yes MAE, MAPE, RMSE

Based on GCN and GRU 2021 [47] Yes MAE, MAPE, MSE Drawbacks: The complexity of 
the method.

Deep Neural Network 2022 [49] Yes R
2 , MAE, RMSE, MSE Practical comparison of methods

Based on CNNs, graphs, and 
LSTMs

2022 [46] Yes RMSE, MAPE
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Elaboration

Figure  10 contains some of the methods used in forecast tasks. Forecasting may be 
accomplished using statistical methods or DL-based methods. Both approaches have 
advantages and disadvantages. Depending on the context, statistical methods may 
be more advantageous than DL methods and vice-versa. While statistical methods 
are explainable, they are usually more robust in short-time predictions, and they pre-
sent the best results in short-time contexts. They are usually not suitable for long-term 
forecasting.

ANNs present some disadvantages. The first problem is to find the weights of the 
inputs. The training process will update the model weights in each iteration; however, 
the optimization algorithm used may not lead to the minimum error or loss and can 
lead to overfitting. The training process can be extensive, making its adoption difficult in 
some contexts. ANNs also require a lot of information and great computational power 
when compared with statistical methods.

One of the big problems with ML algorithms is the lack of transparency, especially 
in ANNs. ANNs are often seen as “black boxes” [41]. In order to solve this issue, a new 
topic has emerged in the scope of ML: explainable models. Explainability plays a cru-
cial role in the understanding of a particular problem. A correct prediction is not always 
enough, since it can have real impacts in terms of security, ethics, mismatched objec-
tives, privacy, and others [42].

The more relevant advantage of using DL based methods is the possibility of working 
with multidimensional data, in some cases exploring the relationships between space, 
time, and other factors that may influence the prediction. Statistical methods may be 
more beneficial regarding forecasting methods with real-time stream processing, since 
they are lighter. However, we should consider the application requirements, the data, 
and the threshold between execution time and other performance metrics.

We decided to compare the type of methods used in forecasting in terms of popularity 
over the years, highlighting the last years. Figure 11 contains the relationship between 
the number of documents retrieved from Scopus when we perform the query example 
Q7. As we can observe, the use of machine learning and deep learning for forecasting 
increased over the last few years.

Q7:  TITLE-ABS-KEY ( forecasting AND ( “machine learning” OR 
“ml”) )

Fig. 11 Evolution of the popularity of type of methods regarding forecasting over the years. ML stands for 
Machine Learning, DL for Deep Learning, SL for Statistical Learning, and RL for Reinforcement Learning
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We also compared the methods used. Figure 12 contains the obtained results. Before 
2018, the type of methods that were more mentioned were the ANNs. This can happen 
for two reasons: it was used the generic architecture of ANN, or the authors used the 
word when referring to a specific type of ANN. For instance, a LSTM is a type of ANN. 
Over the years, we can observe an increase in the use of LSTMs, CNN, RNNs, AE, and 
GNNs. The popularity of Deep Learning methods does not mean that the statistical ones 
are not important. It just reflects the evolution and trends of research methods.

Summary

Forecasting is an essential task when working with time series datasets. We can have 
different forecasting horizons, such as short, medium, and long-term. We can apply this 
type of method to different contexts and use cases.

Classical methods are mainly based on Auto-Regression. Regarding machine learning 
methods, LightGBM proved to be efficient. In the case of deep learning methods, the 
most used are based on LSTMs, CNNs, AEs, and GNNs. As we discussed, all methods 
have their positive and negative aspects. In addition, the application and intent of the 
problem can make the choice of the technique easier to select.

Anomaly detection

Problem definition

An anomaly occurs when something unexpected happens. We can observe anomalies in 
our daily lives, for instance, a cold day (as if it were winter) in the middle of the summer. 
We can visualize the anomalies in data. If we look for the chart that contains the daily 
temperatures measured in the summer, we would see an anomalous point in relation to 
the other points. However, not all anomalies are expressed in the same way. Anomalies 
can be classified by their nature, they can be a point anomaly, a contextual anomaly, or a 
collective anomaly [54].

A point anomaly can be identified when we compare it with the rest of the data [55]. 
Remembering the “cold day in the middle of the summer” example, if we only had data 
from the summer, we would have a point anomaly if the observed temperature was very 
different from all others.

Fig. 12 Evolution of the popularity of methods regarding forecasting over the years. ANN stands for Artificial 
Neural Network, SVM for Support Vector Machine, LSTM for Long Short-Term Memory, A &S for ARIMA and 
SARIMA, RNN for Recurrent Neural Network, CNN for Convolution Neural Network, FNN for Feedforward 
Neural Network, AE for Autoencoder, GNN for Graph Neural Network, DBN for Deep Belief Network, LGBM for 
LightGBM, HA for Historical Average and RBM for Restricted Boltzmann Machines
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A contextual anomaly happens in a particular context  [55]. If we had data from the 
entire year, we would observe that in the winter there are low temperatures. The point is 
anomalous because it happens in the summer and not in the winter. This is similar to a 
conditional anomaly, which depends on the context to be classified as an anomaly.

A collective anomaly is a collection of points that are considered anomalous when 
compared with the remaining dataset [56]. They can be, for instance, an abrupt change in 
the temperature of the summer. Another example would be a day in which it is verified a 
smaller variation of temperatures. As we know, temperatures are higher in the summer. 
However, we can have fluctuation throughout the day. From the examples above, we can 
conclude that anomalies can also be present in time series, and can be isolated outliers 
or abrupt changes.

There are several challenges associated with the detection of anomalies. Anomalies are 
not always known or noticeable, and it is difficult to define what may be considered as 
anomalous. Besides that, there is always some noise associated with the anomaly detec-
tion. As an example, network attacks can change, evolve, and adapt, marking this as a 
complex problem, and allowing negative impacts to happen from the presence of false 
negatives and false positives in the analysis [54, 57].

Existing solutions

Anomalies are known for being rare in datasets. It is because of that property that they 
are considered anomalies. In a dataset containing anomalies, and if our goal is to identify 
them, we will have a class imbalance problem. This problem is amplified when dealing 
with big data. There are three different techniques to solve this issue [16]:

• Data-based techniques: using sampling methods, we can reduce the level of imbal-
ance;

• Algorithm-based techniques: we can reduce the bias towards the majority group;
• Hybrid techniques.

Learners can have difficulties identifying anomalies, especially in highly imbalanced 
datasets, such as decision trees and logistic regression [16]. Moreover, some classifica-
tion metrics are more sensitive to imbalanced classes. Regarding the evaluation metrics, 
some metrics are highly affected and are not recommended, such as accuracy and error 
rate. Other metrics, such as precision, and recall, can be used, but they alone are usually 
not enough [16]. The F-measure metric is a weighted average of precision and recall and 
is highly used in this context.

To detect anomalies, statistical learning approaches can be used. In [58], Hochenbaum 
et  al. used seasonal decomposing to extract the trend and the seasonal components. 
They proposed two techniques: the seasonal Extreme Studentized Deviate (ESD), and 
the seasonal hybrid ESD, which adds the median and the Median Absolute Deviation.

Some methods to detect anomalies are signal-based. In [59], the authors could effec-
tively detect sharp increases in the local variance using wavelet filters and pseudo-spline 
filters. In [97], Muñoz et al. used correlation-based techniques.

Principal Component Analysis (PCA) based approaches were explored in  [60, 61]. 
In [60], the authors applied wavelet transformations to network traffic data. Then, it is 
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applied PCA to extract the nature of anomalies. Finally, they use a mapping function to 
detect the anomalies. In [62], the authors could also localize the source of anomalies by 
incorporating the network structure information with the PCA model. They used the 
Karhunen Loève Expansion to get spatial and temporal correlations. In [61], the authors 
proposed the use of Minimum Covariance Determinant (MCD) with Robust Principal 
Component Analysis (rPCA). As PCA might have issues associated with introducing the 
outliers in the subspace, rPCA tackles it, with a computational cost. The use of MCD 
helps to ease the computational cost.

We can also find in the literature approaches based on the k-Nearest Neighbors (KNN) 
algorithm. In  [63], the authors proposed a Transductive Confidence Machine (TCM) 
with KNN for online anomaly detection. They could improve their results by applying 
instance selection. The authors of [22] compared Naive Bayes, Support Vector Machine 
(SVM), and decision trees, and in [36] it is used Naive Bayes.

Several works are based on ANNs, such as [37, 64–74]. In [64], motivated by the pres-
ence of a high rate of false alarms and improving accuracy, Hussain et  al. proposed a 
FeedForward Neural Network (FNN) to detect anomalies in cellular networks. They 
accomplished high accuracy and a low False Positive Rate (FPR), proving the usefulness 
of FNNs. The work in [65] used a LSTM to detect network attacks through the anoma-
lies present in data. They tested two types of baselines. In the first one, they only used 
cleaned data to train the model (without anomalies). In the second one, they used dirty 
data to train the model (with anomalies). They concluded that the dirty baseline models 
achieved the best results, which is good when no completely clean dataset exists. In [66], 
it is proposed the Parallel Subagging-GRU-based network (PSB-GRU)Parallel Subag-
ging-GRU-based network (PSB-GRU) method. The model uses a Gated Recurrent Unit 
(GRU) network for long-term dependencies, a genetic algorithm to optimize the train-
ing process, the Spark platform to improve train efficiency, and subagging smoothly to 
improve the model’s generalization.

In [67], it is compared the performance of several RNN-based methods. The authors 
concluded that LSTM networks achieve the best results in terms of performance; how-
ever, the other RNN-based network also achieved good results. The works in  [65–67] 
allow to conclude that sequential NN are suitable to detect anomalies. In [68], it is pro-
posed a CNN-based method to extract spatio-temporal and other features from data 
with a threshold-based separation method to detect anomalies. The architecture had 
four convolutional layers. They achieved good results; however, they recognize that they 
need a more lightweight method to perform online anomaly detection. The authors 
of [74] also used a CNN. They were able to achieve better performance, in some cases, 
in architectures with one convolutional layer when compared with two or three con-
volution layers. However, their methods did not outperform RNN-based methods. The 
authors of  [69] explored how CNNs can fail. The authors concluded that a one-pixel 
attack can mislead CNN-based networks. Increasing the number of layers (three convo-
lution and three pooling layers) and retraining contributes to a more robust detection.

The authors of  [70] proposed an ensemble method based on RBM and SVM. They 
tested their method in real time and achieved good performance. The work in  [71] 
used Self-Organizing-Maps (SOM). Their model is computationally light, presenting 
results with a very low delay. In [37] the authors also use SOM with k-medoids, and they 
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perform a two-step clustering. They achieved fast online detection and a multistage 
decision to distinguish different anomalies. In [72] it is proposed an autoencoder-based 
method with convolution. The use of autoencoders allowed the authors to capture non-
linear correlations between features. The use of convolution has also reduced the train-
ing time. In  [73], stacked autoencoders are used with a one-class classification model. 
The use of autoencoders allows the selection of the most relevant features and the reduc-
tion of data dimensionality.

Other approaches, such as the one proposed by [75, 76] are tensor-based. A tensor is 
a structure similar to a multidimensional array with three or more dimensions. When 
we have one dimension, we have a vector (denoted as a first-order tensor), and if we 
have two dimensions, we have a matrix (second-order tensor) [76]. In [75], the proposed 
method is based on tensor decomposition. The method in [76] is based on tensor factor-
ization, and we have a two-phase anomaly detection. Tensor-based methods are useful 
when we have complex data with high-dimensional orders.

Table  6 resumes the revised works for anomaly detection. We can visualize differ-
ent types of methods. In anomaly detection, one of the most important tasks is the fair 
evaluation of the methods. Usually, in an anomaly detection problem, we have the class 
imbalance problem, as mentioned above. To compare better the evaluation metrics used, 
we decided to create Table 7. False Positive Rate, True Positive Rate, and accuracy are 
the most frequently used metrics. The class imbalance highly affects the accuracy, and 
this metric should not be used, especially without other metrics.

Elaboration

Figure  13 contains some methods used in anomaly detection. Traditional statisti-
cal methods can fail in the face of big data and data with several dimensions. On the 
other side, ML methods can deal with high dimensionality. Supervised methods achieve 
good performance in detecting anomalies  [6]. However, they have problems detect-
ing new unseen types of anomalies. Unsupervised methods are good at detecting new 
anomalies [14].

Figure  14 contains the evolution of the popularity of the type of anomaly detection 
methods over the last few years. The use of statistical methods decreased while the use of 

Fig. 13 Anomaly detection methods



Page 26 of 32Almeida et al. Journal of Big Data           (2023) 10:83 

deep learning methods increased. Currently, most of the published works use machine 
learning and deep learning. Similarly, Fig.  15 contains the evolution of the popularity 
of techniques over the last few years. As we can observe, methods such as PCA, SVM, 
and KNN lost popularity over time, while the focus evolved to the use of CNNs, RNNs, 
LSTMs and AE.

Summary

As can be concluded from the above information, there are several methods that can 
be applied to anomaly detection. Regardless of the chosen method, we must take into 

Table 6 Comparison of anomaly detection methods in literature

PM Proposed Method

Type of Method Method PM Year Metrics

Statistical Based on recursive least 
squares, and sparsity 
maximization

[75] 2016 F-Score, ROC, Residual error

Based on wavelet filters 
and pseudo-spline filters

[59] 2002 TP

Based on correlation 
techniques

[97] 2016 Absolute error

Based on Dirichlet process [77] 2019 Accuracy, FPR, TPR

Based on seasonal 
decomposition and robust 
statistical metrics

[58] 2017 F-Score, TPR, Precision

ML Based on PCA Based on rPCA [61] 2017 FPR, FNR

Based on PCA and the Kar-
hunen Loève Expansion

[62] 2013 AUC, ROC

Based on multi-scale 
analysis, PCA, and wavelet 
transforms

[60] 2015 ROC

Based on KNN and TCM [63] 2009 FPR, TPR

Naive Bayes [36] 2018 Accuracy

Based on SVM SVM [22] 2015 Accuracy

Based on RBM and SVM [70] 2019 Accuracy, FPR, F-Score, ROC, 
Precision

Based on SOM SOM [71] 2005 FPR, TPR

SOM with k-medoids [37] 2018 FPR

Based on tensor factorization [76] 2017 FPR, TPR

DL Based on FNNs [64] 2019 Accuracy, Error rate, FPR, 
F1-Score, Precision, TPR

Based on RNNs Based on GRU [66] 2021 Accuracy, F1-Score, Preci-
sion, TPR

Based on RNNs [67] 2017 Accuracy, AUC, FPR, Loss, 
ROC, TPR

Based on LSTM [65] 2018 AUC, ROC

Based on CNNs Based on CNNs [68] 2018 TPR

Based on CNNs [74] 2018 MCC

Based on CNNs and FNNs [57] 2018 Accuracy, FPR, TPR

Based on CNNs [69]* 2020 Accuracy

Based on Autoencoders Based on Autoencoders 
and convolution

[72] 2018 Accuracy, FPR, ROC

Based on Stacked Autoen-
coders

[73] 2019 Accuracy
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Table 7 Evaluation metrics used in anomaly detection problems

Metrics Papers # of Papers

Absolute error [97] 1

Accuracy [22, 36, 57, 64, 66, 67, 69, 70, 72, 73, 77] 11

AUC [62, 65, 67] 3

Error rate [64] 1

FPR [37, 57, 61, 63, 64, 67, 70–72, 76, 77] 11

FNR [61] 1

F-Score [58, 70, 75] 3

F1-Score [64, 66] 2

Loss [67] 1

MCC [74] 1

Precision [58, 64, 66, 70] 4

Residual error [75] 1

ROC [60, 62, 65, 67, 70, 72, 75] 7

TP [59] 1

TPR, sensitivity or recall [57, 58, 63, 64, 66–68, 71, 76, 77] 10

# of distinct papers 25

Fig. 14 Evolution of the popularity of type of methods regarding anomaly detection over the years. ML 
stands for Machine Learning, DL for Deep Learning, SL for Statistical Learning, and RL for Reinforcement 
Learning

Fig. 15 Evolution of the popularity of methods regarding anomaly detection over the years. ESD stands for 
Extreme Studentized Deviate, PCA for Principal Component Analysis, rPCA for Robust Principal Component 
Analysis, MCD for Minimum Covariance Determinant, KNN for k-Nearest Neighbors, NB for Naive Bayes, SVM 
for Support Vector Machine, DT for Decision Trees (and includes random forest), ANN for Artificial Neural 
Network, FNN for Feedforward Neural Network, LSTM for Long Short-Term Memory, RNN for Recurrent Neural 
Network, CNN for Convolution Neural Network, SOM for Self-Organizing-Maps, RBM for Restricted Boltzmann 
Machines, AE for Autoencoder and DBSCAN for Density-Based Spatial Clustering of Applications with Noise
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consideration some problems associated with the nature of the data. The first class of 
problems that the methods can be vulnerable to are data poisoning attacks. In this con-
text, a data poisoning attack might be something that we consider normal, being abnor-
mal in the training phase. In [77], the authors deal with this problem by separating the 
training phase from the learning process.

Different methods should be considered when dealing with anomalies in data streams, 
since there is not one single method able to detect all types of anomalies. Furthermore, 
data streams are very susceptible to data poisoning attacks, since the use of supervised 
methods does not know the most recent data and needs to be regularly updated. More-
over, we should evaluate, once more, the threshold between execution time and other 
performance metrics. Finally, in the context of big data and ML, we should take into 
account that we are dealing with a class imbalance problem.

Conclusions and future research directions
Data by itself can have no value for organizations and society. However, we can trans-
form data into knowledge and improve decision-making through analysis. Nevertheless, 
dealing with big data can be a complex problem, especially when the data keeps growing 
over time. In this context, Stream Processing Engines emerged. They are an essential tool 
for processing big data in real-time. In this work, we presented some frameworks to pro-
cess data streams in real-time, and we compared them. Spark is not a native streaming 
framework since it uses micro-batches, which brings some performance issues. How-
ever, Spark is the most popular framework with several exploratory data analysis and 
machine learning modules. On the other side, Flink can deal better with data-intensive 
applications, while Heron seems to scale better.

We also presented approaches to deal with common big data problems, such as fore-
casting and anomaly detection in real-time. Applying these algorithms in real time can 
be very beneficial for organizations. For instance, the use of forecasting can help organi-
zations to optimize the use of services and resources. On the other side, using anomaly 
detection algorithms can prevent or minimize problems before they happen, such as 
network attacks. Finally, we discussed statistical, machine learning, and deep learning 
approaches. Statistical methods are more explainable and computationally lighter. On 
the other side, machine learning methods deal better with complex data and can predict 
longer times.

As future research directions, we would like to suggest real-time analytics and algo-
rithms over big data time series streams. Namely, having time series related machine 
learning and deep learning algorithms take advantage of online learning for providing 
real-time analysis, forecasts, and anomaly detection. Another possible research direc-
tion is the development of explainable methods focused on time-series.
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