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Abstract 

Sleep disorders are significant health concerns affecting a large population. Related 
clinical studies face the deficiency in sleep data and challenges in data analysis, which 
requires enormous human expertise and labor. Moreover, in current clinical practice, 
sleep data acquisition processes usually cover only one night’s sleep history, which 
is too short to recognize long‑term sleep patterns. To address these challenges, we 
propose a semi‑supervised learning (cluster‑then‑label) approach for sleep stage 
classification, integrating clustering algorithms into the supervised learning pipeline. 
We test the effectiveness of the proposed semi‑supervised learning approach on two 
architectures: an advanced architecture using deep learning for classification and 
k‑means for clustering, and a relatively naive Gaussian‑based architecture. Also, we 
introduce two novel Gaussian transformations to improve the robustness and accu‑
racy of the Gaussian‑based architecture: assembled‑fixed transformation and neural 
network based transformation. We reveal the effectiveness of the proposed algorithm 
via experiments on whole‑night electroencephalogram (EEG) data. The experiments 
demonstrate that the proposed learning strategy improves the accuracy and F1 score 
over the state‑of‑the‑art baseline on out‑of‑distribution human subjects. The experi‑
ments also confirm that the proposed Gaussian transformations can significantly gain 
normality to EEG band‑power features and in turn facilitate the semi‑supervised learn‑
ing process. This cluster‑then‑label learning approach, combined with novel Gaussian 
transformations, can significantly improve the accuracy and efficiency of sleep stage 
classification, enabling more effective diagnosis of sleep disorders.

Keywords: Gaussian transformation, Semi‑supervised learning, Sleep stage 
classification

Introduction
The rapid development of deep learning has created models that are reliable and practi-
cal in many aspects of engineering and technology, surpassing human experts in cer-
tain fields [1]. However, typical state-of-the-art deep models usually require enormous 
amount of labeled data for training in supervised learning missions like classification and 
regression. For some specific fields where data labeling is utterly time-consuming and 
expensive, the models must exploit unlabeled data more efficiently to manifest satisfying 
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performance [2]. One representative scenario is sleep disorder research, where patients’ 
whole night sleep histories need to be manually labeled by well trained experts [3] to get 
access to patients’ sleep rhythms, which are often represented as sleep stage transitions. 
According to the recent American Academy of Sleep Medicine (AASM) scoring man-
ual [3], sleep stages contain non-rapid eye movement (NREM) and rapid eye movement 
(REM) sleep, and NREM sleep can be further subdivided into N1, N2, and N3 stages. In 
medical practices, when using brain waves for sleep stage classification, physicians pre-
fer to use EEG signals than other physiological measurements such as electromyography 
(EMG) and electrooculography (EOG) because EEG signals contain rich information 
about sleep [4].

Since manual labeling of sleep EEG data is challenging and time-consuming, a fully 
labeled data set of sleep EEG signals normally consists of data from fewer than 100 
subjects. This challenges the performance of classifiers on out-of-distribution subjects, 
given the significant inter-subject variability in EEG signals. Although fully labeled EEG 
data are not abundant, unlabeled EEG histories are much more accessible. Utilizing the 
geometric patterns reflected by the unlabeled data, a classifier can adjust for the out-of-
distribution subjects thus maintains its performance. For such reason, machine learn-
ing approaches which can exploit unlabeled data are very appealing for EEG based sleep 
stage classification. This direction has been explored by many researchers [5–12].

In this paper, we propose a semi-supervised, cluster-then-label strategy, synergisti-
cally integrating a clustering procedure into the generic supervised learning pipeline. 
We show that the proposed strategy evidently enhances the classifier’s performance on 
out-of-distribution subjects. Moreover, to improve the accuracy of pseudo-labels pro-
duced by the clustering process, we investigate Gaussian transformations for EEG band 
power features. Two types of transformations are explored: assembled-fixed transforma-
tion and neural network based transformation. With raised normality of features (mean-
ing that the distributions of the features after the normal transformations are closer to 
Gaussian distributions), the Gaussian-based model can potentially achieve higher accu-
racy in both clustering and classification steps.

The rest of the paper is organized as follows: “Related works” briefly reviews the related 
works, and “Methods”explains our proposed methods. “Results” presents the results and 
discusses the observations. Conclusions are presented in “Conclusion”.

Related works
Sleep stage classification

Sleep stage classification is a crucial step for the study of sleep from the perspectives 
of both neuroscience and health care. Researchers have developed numerous machine 
learning approaches for sleep stage classification. These approaches span from super-
vised to unsupervised, semi-supervised, and transfer learning.

Since classification is traditionally a supervised learning problem, supervised learning 
is the most consulted field for sleep stage classification. Researches in this field usually 
strive for better structures of classifiers and for more expressive and robust features. The 
two most commonly used classifiers are support vector machines (SVM) [4, 13, 14] and 
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artificial neural networks  [15–18]. Other classifiers include linear discriminate analy-
sis (LDA) [19], bagged tree  [20], etc. For feature extraction, wavelet is the most popu-
lar method  [14, 15, 19]. Another way for feature extraction is to arrange the input of 
a classifier as a graph [4, 13, 18]. Some deep models directly use raw signals to realize 
end-to-end approaches [17, 18].These approaches can attain satisfactory performance on 
an identically and independently distributed (i.i.d.) test set, but they often rely on large 
sets of labeled data for training and might not generalize well when dealing with out-of-
distribution subjects.

Compared with supervised learning approaches, unsupervised learning methods are 
less commonly used for sleep stage classification. This is mainly because unsupervised 
leaning approaches do not explore the information from labels thus they usually require 
extra steps before generating predictions. One representative work in this field is con-
tributed by Rodríguez-Sotelo et  al., who extract entropy features from multi-channel 
EEG signals, analyze feature relevance with the Q-α algorithm, and partition the data 
with the J-means clustering algorithm [21].

Semi-supervised learning, utilizing both labeled and unlabeled data, is a promising 
technique for sleep stage classification. Munk et al. additionally introduce unlabeled data 
counterpart into their maximum likelihood estimation (MLE) cost function and propose 
their own form of conditional probability of unlabeled data [5]. Wuzheng et al. improve 
sparse concentration index to evaluate pseudo-labels’ confidence [6], and Bai and Lu use 
small fully labeled data to pre-train the classifier and feed the generated pseudo-labels 
back to the model for training [7]. Li et al. focus on children sleep analyses and propose a 
bi-stream adversarial learning network to generate pseudo-labels with higher confidence 
and catch the desired feature distribution using a powerful symmetric positive definite 
manifold structure in the student branch [22]. They also propose a multi-task contrastive 
learning strategy for semi-supervised pediatric sleep stage recognition, which enhances 
the neural network’s representation ability with signal-adapted transformations [23].

Transfer learning has also been explored for sleep stage classification. For exam-
ple, Zhao et  al. add domain classifiers to basic convolutional neural networks (CNN) 
to learn domain information from different levels [8]. Jadhav et al. pre-train a CNN on 
ImageNet data set, extract time-frequency features from raw EEG data with continuous 
wavelet transform, and retrain the network on these features [9]. Other transfer learning 
researches include [10–12].

Domain generalization

Traditional machine learning models are trained based on the i.i.d. assumption of train-
ing and test data. This assumption fails in certain biomedical fields including sleep dis-
order research, where the size and diversity of a data set are usually limited. Such data 
deficiency confines the models to generalize well on out-of-distribution subjects. Solv-
ing this distribution shifting problem by simply gathering more data in such fields is 
prohibitively impossible because collecting data is very expensive and expertise inten-
sive. Various approaches are proposed in domain generalization (DG) to enhance the 
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generalization ability of models when the target domains’ distributions are different 
yet related to the distributions of the training domains. These approaches can be cat-
egorized into three categories: data manipulation, representation learning, and learning 
strategies. Detailed surveys can be found in [24] and [25].

Data manipulation

Data manipulation methods enrich the training set by manipulating existing data 
points. Following this track, there are two popular strategies: data augmentation and 
data generation.

Data augmentation distorts the initial data set with various operations including 
adding noise, flipping, rotation, etc. It is a general strategy for improving model’s 
robustness and is not limited to DG. Being required to handle the distorted data, the 
model has to capture general features of different domains. One special data aug-
mentation method is called adversarial augmentation  [26–28]. Specific noises are 
designed forcing the current model to misclassify. By explicitly overcoming its cur-
rent weakness, the model can generalize better.

Data generation based DG strengthens the model’s generalization capability by gen-
erating diverse data points. Unlike data augmentation, which manipulates the original 
data, data generation first trains a generative model using the current data set then 
produces new data with the generative model. Popular generative techniques include 
variational auto-encoder (VAE) [29], generative adversarial networks (GAN) [30], and 
Mixup [31].

Representation learning

Representation learning conceptually decomposes a prediction function into two 
parts—the feature extractor and the executor (e.g., a classifier). A major subcategory 
of representation learning is domain-invariant representation learning, which is built 
on the theory that domain invariant features are general and transferable to different 
domains. One of the most popular representation learning methods is kernel based 
method: it projects original data points onto a higher dimensional feature space to 
construct better patterns and avoids computational burden with kernel tricks  [32–
34]. Also, many methods have been proposed with the idea of domain adversarial 
learning [35–37] and explicit feature alignment [38–40]. The former uses adversarial 
learning to reduce domain discrepancy in a manifold space and the latter uses explicit 
distribution alignments or feature normalization to align the feature distributions 
across domains.

Learning strategies

Numerous learning strategies can be used for DG directly or with minimum modi-
fications. They can be categorized into ensemble learning based DG, meta learning 
based DG, and others.
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Ensemble learning is built upon an assumption that any input is a weighted super-
position of existing training domains. Thus, the final prediction of that input can be 
obtained by assembling multiple models from different domains. Mancini et  al. use 
a domain predictor to generate weights for results from domain-specific predictors 
and then yield the final predication as a weighted sum [41]. Segu et al. compute the 
domain-specific weights according to the distance between the batch norm statistics 
of the target sample and those of each training domain [42]. The classifiers for all the 
domains share the parameters except the batch normalization parameters.

Meta learning is also referred to as “learning to learn,” which inducts a general 
model from multiple sources. Li et al. stimulate distribution variations by randomly 
dividing source domains into meta-training and meta-test domains at each training 
iteration [43]. Balaji et al. parameterize the regularization term with a separate neural 
network. This regularizer is trained with meta learning so that it can enable generali-
zation through domains [44]. Other studies in this category include [45–47].

There are also other learning strategies that can be adopted to DG, and the proposed 
method in this paper belongs to this category. Carlucci et al. propose a self-supervised 
method that learns general representations by solving jigsaw puzzles [48]. Li et al. train 
the feature extractor and the classifier using episodic training  [49]. Self-challenging 
mechanism is used in [50] to iteratively abandon domain-specific features.

Gaussian transformations for EEG signals

Models that assume their inputs subject to Gaussian distributions are usually simple, 
and their behaviors are easy to interpret. However, most EEG features are not subject 
to Gaussian distributions by nature. Researchers have tried to modify the distribu-
tions of EEG features for better normality and then easier classification. In  [51], Gas-
ser et al. compare the performance of various fixed transformations like 

√
x , log(x) , and 

log(x/(1− x)) , where the x’s are either absolute values of EEG band powers or relative 
band power ratios. These transformations can symmetrize skew distributions. Boyd 
and Lacher propose a two-step transformation procedure for clinical data. The first 
step removes the skewness, and the second step handles kurtosis [52]. All these works 
transform data in a complete open-loop manner. In other words, their transformations 
are designed only with prior statistical knowledge without any feedback from the trans-
formed results. In this paper, we design two types of data-driven Gaussian transforma-
tions (one of which works in a close-loop manner), which are helpful to the proposed 
cluster-then-label strategy.

Methods
Problem formulation

Denote the a raw EEG signal data set as S0 = {(s1, y1), ..., (sN , yN )} , where si ’s are raw 
EEG signals and yi ’s are the according sleep stages. The set S = {(x1, y1), ..., (xN , yN )} is 
derived from S0 after replacing the raw EEG signals with extracted features. The cluster-
ing algorithm is denoted as G, which takes {x1, ..., xN } as input and generates clusters 
(groups) {g1, ..., gK } . The classifier is denoted as C, which receives a feature vector x and 
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predicts the according sleep stage. The classifier’s performance is evaluated on an inde-
pendent data source Starget , where the features may be subject to a distribution different 
from that of S.

Cluster‑then‑label algorithm

Figure  1 shows the overall pipeline of our proposed cluster-then-label strategy. Blue 
nodes stand for data, where X and Y are the sets of EEG signal features and labels, 
respectively. Note that only the initial data set is labeled: X0 and Y0 are from S, while X1

,..., Xm are from Starget . Yellow triangles denote classifiers, and green rectangles repre-
sent clustering and training processes. We start with training a classifier C0 on the fully 
labeled yet relatively small data set. In the following iterations, instead of directly gener-
ating pseudo labels using the pre-trained classifier, we use a clustering process to utilize 
the geometrical information in the feature space and thus correct the labels of the points 
which otherwise would have been mis-classified. In these iterations, unlabeled data, as 
a more accessible type of data source, are fed into a clustering model—Gaussian mix-
ture model (GMM) or k-means as in our experiment. The clustering model returns K 
clusters, where K indicates the number of sleep stages we want to classify. Using the pre-
trained classifier, each cluster is given a uniform label corresponding to the dominating 
class in that cluster. Then, these new data with pseudo labels are used to retrain the clas-
sifier. Such process can be repeated as long as new unlabeled data are available. We omit 
the feature extraction process in this figure, because sometimes it is a separate process 
and in other cases a part of the classifier. To sum up, the classifier C is initially trained 
on the fully labeled data set S and then retrained using the pseudo-labeled samples from 
Starget . This general structure is suitable for various combinations of classifiers and clus-
tering algorithms.

We test the effectiveness of the proposed semi-supervised learning algorithm on two 
architectures: an advanced architecture using a deep learning model for classification 

Fig. 1 Cluster‑then‑label algorithm pipeline
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plus k-means for clustering, and a relatively naive architecture using LDA for classifica-
tion plus GMM for clustering. The main reasons why we even try the Gaussian-based 
LDA plus GMM architecture are: i) Gaussian assumption can simplify and facilitate the 
theoretical analysis, which may gain insights about the robustness and accuracy of the 
proposed cluster-then-label strategy, and ii) the distributions of EEG band power fea-
tures can be transformed to Gaussian-like distributions.

TinySleepNet classifier plus k‑means clustering

We use a state-of-the-art deep model, TinySleepNet [17], as the classifier for the deep 
model plus k-means scheme. The model consists of a CNN part and a recurrent neu-
ral network (RNN) part. The CNN part contains four convolutional layers with a max-
pooling layer and a dropout layer inserted after the first and the last convolutional layers. 
Using only one deeper branch of convolutional layers with smaller filters, the network 
can obtain the same effective receptive fields as adding another branch of convolu-
tional layers with larger filters [17, 53]. The outputs of the feature extractor (CNN) can 
be viewed as non-normalized probabilities of sleep stages. These outputs may not be 

Fig. 2 The structure of TinySleepNet
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subject to Gaussian distributions by nature and not suitable to be modified into Gauss-
ians. This is the reason for choosing k-means over GMM for the clustering algorithm 
here.

The RNN part of the TinySleepNet captures the sleep transition rules that modifies the 
likelihood of current sleep stage based on the previous sleep stages. This part consists of 
one layer of unidirectional long short term memory (LSTM) cells (Fig. 2).

LDA classifier plus GMM clustering, part I: multitaper spectrogram

The cluster-then-label algorithm using deep learning plus k-means architecture can 
significantly improve the classifiers’ performance on data from out-of-distribution sub-
jects, but we observe some random failures of the algorithm during the experiments. 
This indicates that a successful execution of the algorithm depends on its random ini-
tialization, because all the trials of the algorithm execution are identical except for their 
initialization processes. Fig.  3 displays several training histories of independent toy 
experiments. Figure 3d illustrates a typical failure. Data for these experiments are sam-
pled from two 2-D Gaussian distributions. To gain theoretical insights and simplify the 
potential robustness analysis of the cluster-then-label scheme, we try the Gaussian based 
LDA plus GMM architecture. Experimenting with this relatively naive architecture can 
also promote our understanding of more advanced cluster-then-label architectures.

Because LDA and GMM cannot directly handle high dimensional temporal inputs like 
raw EEG signals, we need a separate feature extraction step to use these models in our 
experiments. One of the most intuitive and natural feature sets for EEG signals is EEG 
band power feature. With this feature set, an EEG slice can be represented by a 4-D vec-
tor, where each dimension stands for the total power distributed into a certain frequency 

Fig. 3 Six examples (a‑f) of cluster‑then‑label training histories. Curve d is a typical failure
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band range (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz, and beta: 12–30 Hz). We use 
a technique called multitaper spectral analysis [54]. Spectral analysis is a classic tool for 
signal processing. It extracts the frequency information of a signal. However, typical 
spectral analysis approaches, for example, fast Fourier transform (FFT), suffer from the 
side lobe leakages and the high variance of EEG signals, which result in very noisy and 
unclear spectra. Instead, multitaper spectral analysis uses multiple specially designed 
tapes (or windows) to reduce the leakages and the variance by taking the average spec-
tra. The tapes are called discrete prolate spheroidal sequences (DPSS). They are able to 
remove the false power from the side lobes and are orthogonal to each other. The feature 
extraction steps are formally described in Algorithm 1.

LDA classifier plus GMM clustering, part II: Gaussian transformation

As most EEG features are not subject to Gaussian distributions by nature, we introduce 
two methods (assembled-fixed based and neural network based transformations) to 
reshape the distributions of these features to be more Gaussian-like and thus improve 
the robustness and accuracy of the Gaussian-based LDA plus GMM architecture. Our 
research about Gaussian transformation focuses on scalar transformations, i.e., we 
transform one feature dimension at a time, because a multivariate Gaussian is a combi-
nation of multiple 1-D Gaussians.

Assembled‑fixed transformation

In [51], Gasser et al. report their best results on resting EEG with the Gaussian trans-
formation log( x

1−x ) , where x stands for the relative band power ratio. The curve of this 
transformation is shown in Fig. 4. This transformation works in a way that dilutes points 
in the tails of the distribution because the curve becomes steeper in those areas. We fol-
low this insight in our transformation. The difference is that our data contain EEG sig-
nals from multiple stages. This means the band power features are subject to a mixture 
distribution in our setting. Hence, we keep the basic shape of the transformation curve 
and apply a variational version of it to each stage. We take the combined curve as our 
final transformation. Algorithm  2 formally describes the transformation. Note that all 
sets should be treated as sequential data type in this algorithm.
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In Algorithm 2, we first select a portion of r × 100% of all points in each sleep stage, 
where r ∈ (0, 1] is the effective ratio. Then these data points are scaled into (0,  1), 
and the original transformation is applied to them. Finally, they are re-scaled into 
(µ− 0.5R,µ+ 0.5R) , where µ is the mean value of the original data points in the effec-
tive region and R stands for the range of that region.

The assembled-fixed transformation brings more flexibility than the transformations 
studied in  [51] and better serves our cluster-then-label algorithm under the Gaussian 
assumption, but it still has some drawbacks. First, the curve’s basic shape is fixed, which 

Fig. 4 The curves of the basic transformation y = log( x
1−x

)
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limits the overall flexibility. Second, when dealing with data from the target domain, a 
new point needs to go through the transformation for every stage because we do not 
know which stage it belongs to. As a result, the steep tails of one stage may intrude into 
the other stages’ flatten areas, leading to grooves around the centers the other stages. 
Finally, the designing process of the assembled-fixed transformation is still in an open-
loop manner.

Neural network based gaussian transformation

To address the limitations of the assembled-fixed transformation, we parameterize each 
stage’s transformation with a neural network. The transformation networks are generic 
multilayer perceptrons with a single hidden layer. To train the neural networks, our pro-
pose to use a loss function which is a modified statistic of Jarque-Bera (JB) normality 
test:

where S = µ̂3/µ̂
3/2
2  is sample skewness and K = µ̂4/µ̂

2
2 sample kurtosis. The notation 

µ̂i = 1
n

∑n
j=1(xj − x̄) is the estimation of ith order central moment, where x̄ is the mean 

value of x’s. The term, leading with a hyperparameter � , constrains the mean value shift 
caused by the transformation.

Results
Cluster‑then‑label using TinySleepNet and k‑means

This section corroborates how the cluster-then-label strategy improved deep classifier’s 
performance on raw EEG signals. We conducted our experiments on the open-source 
data set “Sleep EDF Expanded” [55]. All the EEG signals in this data set were sampled at 
100 Hz and were sliced into 30 s pieces. The codes were implemented with Python 3.6 
and TensorFlow 1.13.1.

First, we pre-trained the TinySleepNet classifier on the first twenty subjects using 
“twenty-fold” method. Specifically, we independently trained twenty classifiers, all of 
which started from random initialization. For each classifier, we selected a different sub-
ject out of the overall 20 subjects as the test set. Seventeen remaining subjects were used 
for training and another two subjects for validation. The model with the best perfor-
mance on its test set was selected for further training.

In the second step, we mixed EEG data from three additional subjects to form a 
new data source. At this step, the annotations that came along with the data set were 
invisible in training process and were only used for evaluating the performance. With 
the mixed data source, the CNN part of pre-trained classifier was used for feature 
extraction, which compressed the raw, time serial data of 3000 dimensions into 5 
dimensions. Then the clustering process was conducted based on the 5 dimensional 
features. We used the classic k-means clustering algorithm with random initial cluster 
centroids. Each cluster was assigned with the pseudo-label of its major class using the 
pre-trained classifier. The resulting clusters with pseudo-labels were then mixed and 
evenly divided into 6 folds. With a similar strategy as in the pre-training stage, we 
retrained the classifier 6 times independently. Each time a different fold was selected 

(1)loss = n

6

(

S
2 + (K − 3)2

4

)

+ �
(

X̄in − X̄out

)2
,
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as test data and another one for validation. The accuracy and f1 scores were improved 
by 2.06± 1.16% and 2.03± 1.80% , respectively, with one round of cluster-then-label 
retraining. Detailed data can be found in Tables 1 and 2.

Cluster‑then‑label using LDA and GMM

In this section, we briefly demonstrate how the cluster-then-label strategy improved 
the performance of the simple LDA classifier in a binary (wake and N1 stages) clas-
sification problem. Here, the GMM was the clustering algorithm for the cluster-then-
label strategy. The LDA classifier took 4-D band power features as their inputs. We 
used the EEG data from the first twenty subjects from “Sleep EDF Expanded” and 
extracted band power features using multitaper spectral analysis. Note that we dis-
carded some data points to keep the number of points of each stage the same in the 
training set to avoid the bias from prior probabilities. The “twenty-fold” training strat-
egy was also used. Each time, we selected one different subject for test, and eighty 
percent of the remaining data were used as the training set and twenty percent as the 
validation set. The classifier with the best performance on its test set was chosen for 
retraining.

As in “Cluster-then-label using TinySleepNet and k-means”, we mixed the data from 
three new subjects as a new data source, keeping the annotations only used for per-
formance evaluation. In the clustering process, the resulting clusters with pseudo-
labels were mixed and evenly divided into 6 folds. With a similar strategy as in the 
pre-training stage (using LDA), we retrained the classifier 6 times independently 
with the newly added pseudo-labeled data. Each time a different fold was selected as 
test data and another one for validation. The accuracy and f1 scores were improved 
by 7.17± 6.15% and 9.17± 4.98% , respectively, with one round of cluster-then-label 
retraining. Detailed data can be found in Tables 3 and 4.

Table 1 Improvements in accuracy with TinySleepNet plus k‑means

Fold no. 1 2 3 4 5 6

Before retraining 74.6 74.2 82.4 84.9 89.6 83.4

After retraining 77.2 78.1 84.7 87.3 90.4 83.8

Table 2 Improvements in F1 score with TinySleepNet plus k‑means

Fold no. 1 2 3 4 5 6

Before retraining 55.1 49.7 68.0 68.4 73.6 69.5

After retraining 58.4 54.8 69.5 70.7 73.6 69.5

Table 3 Improvements in accuracy with LDA plus GMM

Fold no. 1 2 3 4 5 6

Before retraining 0.57 0.72 0.63 0.83 0.62 0.65

After retraining 0.72 0.73 0.76 0.89 0.60 0.75
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Assembled‑fixed Gaussian transformation

According to [51], applying the transformation log x
(1−x) to relative band power ratio 

features can efficiently convert current feature distributions to be closer to Gaussian 
distributions. We reproduced their experiment on our data and the result is shown in 
Table 5. Note that data from multiple human subjects were included in this experi-
ment. Though this fixed transformation can already reduce the AD test statistics, i.e., 
increasing normality, it cannot handle the scenario where data from different stages 
are mixed together. As designed in Algorithm  2, we conducted experiments of the 
assembled-fixed Gaussian transformation. We used the same data set as in “Cluster-
then-label using LDA and GMM”. One of the representative results is shown in Fig. 5 
and Table 6. In Fig. 5, the transformation was applied on the delta band of the EEG 
data from the third subject in the “Sleep EDF Expanded” data set. We chose delta 
band because it gave best separability. We can observe that the transformation clearly 
fixed the skewness of the wake stage and made the peak of every stage more evident. 
The grooves (most clear in the middle of the wake stage) appear just as expected.

Neural network based Gaussian transformations

In this section, we show the results of neural network based Gaussian transformation. 
We used three layers, fully connected network structure. The hidden layer contained 
400 nodes with rectified linear unit (ReLU) activation function. Adam algorithm [56] 
was used to optimize the model for 400 epochs. Data set were formed by mixing the 
relative band power features of the first ten subjects from “Sleep EDF Expanded” data 

Table 4 Improvements in F1 score with LDA plus GMM

Fold no. 1 2 3 4 5 6

Before retraining 0.51 0.62 0.57 0.54 0.46 0.70

After retraining 0.65 0.64 0.73 0.63 0.50 0.80

Table 5 Performance (AD test statistics) of fixed transformation

Band Beta Alpha Theta Delta

Before transformation

 Wake 137.09 252.17 93.45 178.01

 N1 4.15 6.39 2.14 4.86

 N2 1.81 30.19 0.48 10.01

 N3 2.49 2.70 1.16 0.22

 REM 5.92 4.09 2.07 1.47

After transformation

 Wake 156.99 223.13 52.09 49.78

 N1 2.26 3.96 2.87 2.40

 N2 0.73 18.64 1.26 4.09

 N3 1.19 2.44 1.54 0.38

 REM 3.67 7.44 1.27 0.55
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set. We concentrated on wake and N1 stages and relative band power features of the 
delta band in our experiments.

We only considered the band power feature of the delta band from two sleep stages 
(wake and N1 stages) for the following reasons: (i) the major proportion of sleep dis-
orders involve sleep onset difficulties, and this emphasizes the importance to detect 
wake and N1 stages; (ii) all the 5 sleep stages can be manually pair-wise distinguished 
based on single band information; iii) to learn a uniform transformation for 5-stages 
data, the network needs huge amount of hidden nodes and data for fine-tuning. With 
limited data availability in our scenario, large amount of hidden nodes will cause 
overfitting.

The resulting Gaussian transformations should be nearly monotonically increasing 
functions and have a reasonable output range so that they can preserve meaningful 
biological information. To induce such properties, we first initialized the network 
with the assembled-fixed transformation supervising with mean square error loss 
function. The training inputs for initialization was uniformly sampled in the range 
from 0.0001 to 0.9999 with the step size of 0.0001. Figure 6 displays the initialization 
result.

At the second step, we trained the network using JB loss with the hyperparameters: 
� = 0.1 , number of epochs = 500 , batch size = 128 , and learning rate = 0.0001 . Ninety 

Fig. 5 Data distribution before (top) and after (bottom) assembled‑fixed transformation

Table 6 Improvements in AD statistics (smaller value indicating better normality) with assembled‑
fixed transformation

Sleep stages Wake N1 N2 N3 REM

Before transformation 20.13 1.16 6.91 0.42 0.75

After transformation 26.70 0.82 1.44 0.28 0.21
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percent of the data were used for training and the rest for validation. Data batches from 
the two sleep stages were alternately fed into the neural network. Figure 7 presents the 
training history of the transformation network. The first curve is the loss on the training 
set and the second curve is the loss on the validation set. The x axes denote the number 
of epoch and the y axes the loss values. The cyclical oscillations were due to the alternate 
data feeding. Figure  8 presents the modifications on the distributions of EEG relative 
band power features. The values of s in the subtitles are the JB normality test statistics, 
and the values of mean are the corresponding average values of the distributions. The 
first and second rows in the figure are the distributions before and after the transfor-
mation, respectively. The first and second columns correspond to the wake stage and 
N1 stage, respectively. We can observe that the normality statistics evidently decrease, 
which indicates the distributions are more Gaussian-like under the standard of JB nor-
mality test. The resulting transformation curve is shown in Fig. 9.

Fig. 6 The initialization result using assembled‑fixed transformation as the target

Fig. 7 The training history of the transformation network
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Conclusion
In this paper, we propose a cluster-then-label algorithm and prove its effectiveness 
on an advanced deep learning based classifier and a relatively naive LDA classifier. 
The proposed method can evidently improve the classification performance on out-
of-distribution subjects. Moreover, we introduce two types of Gaussian transforma-
tion to make the proposed method more robust and accurate in the LDA classifier 
plus GMM clustering architecture. Both transformations can improve the normality 
of the distributions of EEG relative band power features. The assembled-fixed trans-
formation has the merits of accurate boundaries but works in an open-loop manner. 
The neural network based transformation optimizes the distributions in a close-loop 

Fig. 8 The distributions of EEG relative band power features before and after the transformation. Values of s 
are the JB normality test statistics. The mean values are the corresponding average values of the distributions

Fig. 9 The resulting transformation for relative band power features
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manner but is hard to tune the number of nodes in the hidden layer, balancing its 
flexibility and the ability of generalization.
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