
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Sahebi et al. Journal of Big Data (2023) 10:95
https://doi.org/10.1186/s40537-023-00756-x

Journal of Big Data

Distributed large-scale graph processing
on FPGAs
Amin Sahebi1,2, Marco Barbone3*, Marco Procaccini1,5*, Wayne Luk3, Georgi Gaydadjiev3,4 and Roberto Giorgi1,5*

Abstract

Processing large-scale graphs is challenging due to the nature of the computation that
causes irregular memory access patterns. Managing such irregular accesses may cause
significant performance degradation on both CPUs and GPUs. Thus, recent research
trends propose graph processing acceleration with Field-Programmable Gate Arrays
(FPGA). FPGAs are programmable hardware devices that can be fully customised to
perform specific tasks in a highly parallel and efficient manner. However, FPGAs have a
limited amount of on-chip memory that cannot fit the entire graph. Due to the limited
device memory size, data needs to be repeatedly transferred to and from the FPGA on-
chip memory, which makes data transfer time dominate over the computation time.
A possible way to overcome the FPGA accelerators’ resource limitation is to engage a
multi-FPGA distributed architecture and use an efficient partitioning scheme. Such a
scheme aims to increase data locality and minimise communication between differ-
ent partitions. This work proposes an FPGA processing engine that overlaps, hides and
customises all data transfers so that the FPGA accelerator is fully utilised. This engine
is integrated into a framework for using FPGA clusters and is able to use an offline
partitioning method to facilitate the distribution of large-scale graphs. The proposed
framework uses Hadoop at a higher level to map a graph to the underlying hardware
platform. The higher layer of computation is responsible for gathering the blocks of
data that have been pre-processed and stored on the host’s file system and distribute
to a lower layer of computation made of FPGAs. We show how graph partitioning com-
bined with an FPGA architecture will lead to high performance, even when the graph
has Millions of vertices and Billions of edges. In the case of the PageRank algorithm,
widely used for ranking the importance of nodes in a graph, compared to state-of-the-
art CPU and GPU solutions, our implementation is the fastest, achieving a speedup of
13 compared to 8 and 3 respectively. Moreover, in the case of the large-scale graphs,
the GPU solution fails due to memory limitations while the CPU solution achieves a
speedup of 12 compared to the 26x achieved by our FPGA solution. Other state-of-the-
art FPGA solutions are 28 times slower than our proposed solution. When the size of a
graph limits the performance of a single FPGA device, our performance model shows
that using multi-FPGAs in a distributed system can further improve the performance by
about 12x. This highlights our implementation efficiency for large datasets not fitting in
the on-chip memory of a hardware device.

Keywords: Graph processing, Distributed computing, Grid partitioning, FPGA,
Accelerators

*Correspondence:
m.barbone19@imperial.ac.uk;
marco.procaccini@unisi.it;
giorgi@unisi.it

1 Department of Information
Engineering and Mathematics,
University of Siena, Siena, Italy
2 Department of Information
Engineering, University
of Florence, Florence, Italy
3 Department of Computing,
Imperial College London,
London, UK
4 Department of Quantum
and Computer Engineering, Delft
University of Technology, Delft,
Netherlands
5 Consorzio Interuniversitario
Nazionale per l’Informatica,
Rome, Italy

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00756-x&domain=pdf

Page 2 of 28Sahebi et al. Journal of Big Data (2023) 10:95

Introduction
Graphs are growing in popularity because they are a powerful tool for uncovering
patterns, connections, and insights within data, which can be used to support a wide
variety of applications, including fraud detection, social network, bio-informatics, and
computer vision. Graphs are best at representing data with complex relationships and
inter-dependencies often generated from non-Euclidean domains. Since these data are
becoming more popular, graphs are growing in adoption, and recently, many studies on
extending deep learning approaches for graphs have emerged. Especially graph neural
networks (GNNs) [61]. Moreover, graph-based models are used heavily in the biological
domain to predict the properties of new compounds, estimate their activity levels, pre-
dict their side effects [13], and generate candidate molecular structures [54]. However,
due to their irregular nature, graphs are inherently hard to compute, becoming a chal-
lenging task [10, 23, 45, 46, 51, 66].

Graph computing is due to their irregular structure, which leads to a high amount
of stochastic and irregular access to the memory [33]. This factor contributes to a lack
of data locality, which leads to the inability to achieve high parallelism; multiple work-
ers would only increase overhead instead of performance due to the contention on the
memory controller. Recent advances in computer architectures offer different solutions
for CPUs, GPUs, FPGAs, and other accelerators to overcome such computational chal-
lenges [20, 62, 64, 67, 72]. However, all these architectures present different trade-offs:
GPUs, for example, are optimised for massively parallel workloads (e.g., Deep Neural
Networks), while they are less efficient in applications containing extremely memory-
sparse operations and data races issues [42, 65, 70]. Recently, reconfigurable architec-
tures (e.g., Field Programmable Gate Array) are emerging as an attractive alternative to
CPUs and GPUs for graph processing. Unlike traditional CPUs, which are designed to
perform a wide range of tasks, FPGAs are highly customisable and can be tailored to
perform specific functions. They can benefit from the dataflow execution model as it
allows for highly parallel and efficient execution of tasks. In a dataflow execution model,
tasks are broken down into small, independent units of work called “tasks” or “jobs”,
which can be executed in parallel [27–30, 35]. This can be especially beneficial for graph
processing tasks, as it allows for parallel execution of operations such as filtering, sort-
ing, and memory access, allowing them to process large-scale graphs much more effi-
ciently than CPUs or GPUs.

Additionally, FPGAs are highly efficient in handling memory-bound tasks, which is a
common characteristic of graph processing algorithms [8, 16, 51, 70]. The increase in
popularity of modern reconfigurable architectures made researchers focus more on mit-
igating the following problems:

• Graph size: in contrast to CPUs and GPUs, which use a cache hierarchy memory
model, FPGAs can exploit various types of memory, including Lookup Tables
(LUTs), Block RAM (BRAM), Ultra-RAM (URAM) and High-Bandwidth Memory
(HBM). Unlike DRAM, these memory types can provide more performance thanks
to their lower latency and higher bandwidth. Moreover, they can be fully customised
and configured to suit the specific needs of the computation. For example, one of the
most valuable features of BRAMs is their ability to provide high-throughput random

Page 3 of 28Sahebi et al. Journal of Big Data (2023) 10:95

access to memory [9, 26, 68]. The dual-port nature of the BRAM memories allows
parallel, same-clock-cycle access to different locations [55]. However, this feature can
also be a weakness of the system, as accessing the memory through the ports can
cause a performance bottleneck. This is because the ports on BRAM are the only
way to access the data stored within the memory. They are typically implemented
using a finite number of physical connections. When multiple inputs or outputs are
trying to access the memory simultaneously, they may have to wait for the ports to
become available, which can delay and slow down the overall system performance.
Another limitation of using FPGAs for large-graph processing is that the size of on-
chip memory in a single FPGA is often not sufficient to store the entire size of the
graph.

• Data locality: most of the graph structure is irregular, meaning that the degree of
connectivity and the connection themselves may be highly different between nodes.
This may considerably impact the performance as consequently accessed nodes
might be stored far away in memory, hence causing cache misses that greatly degrade
performance. As a result, in the vast majority of cases, data locality is a significant
problem. Moreover, graphs are usually created based on a natural phenomenon,
from Social Networks to Biological structures. Subsequently, the distribution of data
in these graphs, instead of being uniform, follows the Power Law distribution, com-
plicating the locality of data during the computation [18, 40];

• Irregular data access patterns: in unstructured graphs, the data access pattern is not
predictable, meaning that each access to memory is done to a different position. This
type of access is called irregular memory access. This makes it difficult to optimise
memory access, as the location of data in memory is not known in advance, resulting
in longer access times and leading to a decrease in performance [19, 69, 71]. Over-
all, in most graph processing applications, accessing irregular data is more time-con-
suming than the computation itself;

• Data conflicts: in graph applications, data conflicts are very common (e.g., reading/
writing of the same vertex simultaneously). As a result, memory model policies,
such as memory locks or atomic operations, are necessary to guarantee correctness,
affecting the overall performance [66, 70] as they introduce overhead and limit paral-
lelism.

The advent of big data resulted in an increase in model and dataset size and even graphs.
Thus, such graphs, often called large-scale graphs, are not manageable by a single node
anymore [44]. Hence, the advent of distributed large-scale graph computing. Many
distributed frameworks can be used to analyse large-scale graphs, for example, Map-
Reduce [5], Stratosphere [1], Hama [52], Giraph [50], Graphlab [41]. Although these
frameworks are not capable of natively targeting accelerators, they offer good perfor-
mance when used to analyse large-scale graphs [22].

This study targets the challenges of large-scale graph processing and proposes a new
framework. This framework adapts the state-of-the-art partitioning scheme proposed
in GridGraph [32] for FPGA use. The GridGraph library partitions the edges of a
graph into smaller chunks, each managed by a specific vertex of the graph. The frame-
work also provides a reconfigurable architecture targeting FPGAs. This architecture

Page 4 of 28Sahebi et al. Journal of Big Data (2023) 10:95

outperforms CPUs by over 26x and enterprise GPUs by over 4x. Moreover, the pro-
posed partitioning scheme can be applied recursively, graphs can be partitioned into
subgraphs, and these subgraphs can be partitioned again. This allows applying
the proposed framework to distributed computing. A graph can be portioned and
assigned to nodes first, and then these partitions are further split for parallel process-
ing on FPGA accelerators, if available on the node. This study analyses the integration
between the proposed framework and Hadoop for distributed computing and pro-
posed forecasts based on the measured performance combined with the well-known
scalability characteristics of Hadoop [21, 34].

The main contributions of this paper are as follows:

• Introducing a framework of reconfigurable architecture suitable to process very
large-scale graphs. This framework gets the benefit of an offline partitioning
scheme to manage the underlying FPGA devices. This work shows the potential of
using this approach as an efficient core of a distributed platform;

• Analysing the large-scale graph computing challenges on FPGAs by presenting a
baseline study and distribution methodology toward processing large-scale graphs
on Data Centre acceleration platforms;

• A novel model based on Hadoop to distribute the graph processing workload on
the available workers. This model provides a flexibility to execute a very large scale
graph dataset on the available resource either CPU or FPGA which is efficient and
cost-effective.

• Proposing an optimised implementation of the PageRank for a single FPGA, which
outperforms state-of-the-art open source solutions on CPU, GPU and FPGA
offering a speedup up to 2×, 4.4× and 26× higher.

The rest of this paper is structured as follows: in "Problem definition" section, we
describe the background and the motivation of this study. In "Existing solutions" sec-
tions, we discuss related studies and their features compared to our study, and we
introduce a taxonomy of the recent works on FPGAs and their characteristics. Then
in "Proposed solution" section, we introduce the proposed solution in "Elaboration"
section, and we further discuss the baseline study, the methodology of design imple-
mentation and its evaluation. Finally, in "Conclusions" section, we conclude and
briefly introduce future works.

Problem definition
Recent studies on graph processing on FPGA [16, 19, 51] evaluate their work with
medium-sized graph datasets instead of using large-scale ones. Hence, these graphs
can be computed by a desktop CPU, as shown by Sakr et al. [49]. This may discourage
the usage of hardware accelerators, like FPGAs or GPUs since they are generally more
costly and less programming friendly than a general-purpose CPU. However, the rise
of big data technologies made it easier to collect, store, and process large volumes of
data. This led to more data being available to be represented as a graph, resulting in
larger graph sizes. In fact, graph size is rapidly growing, reaching the order of Peta

Page 5 of 28Sahebi et al. Journal of Big Data (2023) 10:95

Bytes [49], exceeding the main memory storage capacity available on modern CPUs
or GPUs. Thus, the motivation of our work is large-scale graphs evaluation, also con-
sidered in recent works on FPGAs [6, 19, 51].

The second motivation is integrating a high-level interface to deploy a distributed plat-
form on top of the underlying hardware. Hadoop is a valuable solution for large-scale
graph processing because it provides a powerful set of tools for storing, processing, and
analysing large graph datasets in a distributed manner. The Hadoop Distributed File Sys-
tem (HDFS) allows for the storage of large data sets across a cluster of machines, making
it possible to process graphs that are much larger than what a single machine can handle.
The scalability of Hadoop allows the cluster to be easily adapted by adding or remov-
ing machines, allowing the processing of large graphs cost-effectively. The map-reduce
programming model employed by Hadoop facilitates distributed computing, which can
greatly improve the performance of graph processing algorithms.

Existing solutions
This section analyses alternatives and state-of-the-art approaches to large-scale graph
processing.

Single‑FPGA based frameworks

Zhou et al. [69] proposed a system that employs the edge-centric processing model and
the GAS (Global Address Space) paradigm to handle medium-sized graphs in a system-
atic framework. They address the FPGA chip’s memory space limitation by using part
of the onboard DRAM for updates. This buffer temporarily stores intermediate pro-
cessing results, but it creates a significant I/O overhead that lowers graph processing
performance.

To enhance pipeline efficiency and graph processing speed, FabGraph is using a 2-level
caching mechanism for vertices that periodically stores vertex blocks. However, when
extremely sparse real-world graphs are used, streaming processing creates large commu-
nication overhead between the two cache levels [51].

FPGP [18] prepares a large input graph using grid blocks and stores the graph’s vertex
and data in onboard and host DRAM. During computation, the edges are sent to the
FPGA through the host bus and processed.

GridGAS [74] utilises the GridGraph [73] graph partitioning and proposes a method
for processing massive graphs using a heterogeneous FPGA accelerator. The graph data
is immediately sent to the FPGA chip processing unit. However, the system performance
is affected by the PCIe limitation due to the data transfers between the host and the
FPGA device. Low bandwidth results in poor processing performance and low utilisa-
tion rates of the FPGA chip’s resources.

GraphOps [46] presents a modular Dataflow library approach to build a graph pro-
cessing accelerator on FPGA written in MAXJ using the Maxeler toolchain. There are
some limitations with GraphOps: a lack of portability and memory consistency, also it
only supports one FPGA.

GraphGen [45] transforms the input graph into an instruction stream, which is then
processed by pipelines implemented using FPGA’s logic resources. The work utilises the
DRAM memory interface known as CoRAM, which enables the FPGA to access the

Page 6 of 28Sahebi et al. Journal of Big Data (2023) 10:95

host’s main memory. The accelerator is a single processing device that leverages parallel-
ism from the application via pipelining and SIMD processing.

Asiatici and Ienne [6] have introduced large-scale graph processing on a single FPGA
by implementing the work proposed in Chisel using the Vivado design suite for the syn-
thesis process [7]. The evaluation was conducted on Amazon AWS F1 instances, which
include a Virtex UltraScale+ FPGA connected to the host system through PCI Express
and four 16 GB DDR4 channels. The contribution of the work is to eliminate cache
misses and exploit the multi-die feature of a single FPGA.

ThunderGP [16] offers an automated user interface for graph processing, enabling
users to automate the execution of desired applications. To ensure efficient use of the
platform’s memory bandwidth, ThunderGP employs methods to process the appropriate
number of kernels while fitting them within the constraints of the device. ThunderGP
groups Scatter Processing Elements (PEs), these PEs together in a kernel group known as
a “scatter–gather” kernel group, as they operate in the same pipeline. Apply PEs, on the
other hand, are placed in a separate kernel group referred to as an apply-kernel group.

Multi‑FPGA based frameworks

GravF-M [24] provides a redesigned architecture from their previous work [23], that
expand the architecture over the distributed platform and aims to minimise commu-
nication across the inter-FPGA network. Although network bandwidth is the limiting
factor for distributed computing performance on most systems, a proper design can
increase overall system compatibility and performance. In GravF-M, authors design a
scatter-apply-gather paradigm among multiple PEs, communicating with other process-
ing elements on another FPGA board through the network interconnect. A Processing
Element (PE) here is a minimal hardware function that expresses the proposed method.
GravF-M also incorporates a low-overhead partitioning technique that improves load
balancing among PEs and FPGAs. The FPGA kernel is performed for each active vertex
in the graph called superstep. A vertex kernel only has access to constrained data locally
to the vertex during a superstep. Messages are used to share data with neighbouring ver-
tices. Gather, Apply, and Scatter are three further functions included in this implemen-
tation. On the contrary, while we use GridGraph, we do not need to implement these
stages since GridGraph has already combined the three phases into one stream-apply
phase in that every edge is streamed, and the produced update is promptly applied to
the source or destination vertex. Only one traverse across the edge blocks is required by
aggregating the updates. This significantly simplifies the design and exploits better paral-
lelism since the processing element can be duplicated in the FPGA resources with much
more numbers than presented in GravF-M. The programming model used in GravF-M is
Migen, a Python-based tool to export Verilog codes to be synthesised with conventional
tools such as Vivado. The important limitation of GravF-M is the limited dataset size,
which needs to fit the entire graph in the resources provided by the FPGA. Moreover,
the evaluation has been done on just Synthetic graphs like RMAT [14] to make sure the
load is balanced through the distribution in the network and the size of the evaluated
dataset is small. Another limitation of GravF-M is the compatibility of the work to be
extended to large-scale graphs; first, the whole graph must fit onto the FPGA; second,
there is no supervision from the host, and orchestration of the work must be considered

Page 7 of 28Sahebi et al. Journal of Big Data (2023) 10:95

and hard coded from the initial implementation. Whereas, in our proposal, the host
orchestrates the graph’s workload and distributes it among the available FPGAs, which
allows for dynamic load balancing and scheduling.

In ForeGraph [19] authors propose a graph processing framework that utilises the
onboard DRAM grid representation of graphs and distributes FPGA logic resources
within several pipelines. Each pipeline consists of two vertex buffers that preserve vertex
blocks. Through these pipelines, the blocks dedicated to each vertex are first loaded into
the vertex buffers connected to the buffers, and then the edge blocks are processed in
parallel by the FPGA chip. In this technique, the pipelines interface explicitly with the
DRAM to swap vertex data, resulting in small pipeline delays and improved graph pro-
cessing performance.

Although ForeGraph provided a state-of-the-art competitive evaluation against other
recent studies, the work is based on simulation, and output results have not been experi-
mentally validated on a real hardware platform. The critical point is that the presented
approach in this work is likely to face hardware limitations such as the clock and timing
constraints of actual hardware. Additionally, the overhead of the network is neglected
since the overhead of such network interconnects is not considered in the evaluated
results on a simulated platform, which can make a significant difference.

There are few and limited works that elaborate on Hadoop on multi-FPGA platforms
[2, 17, 43]. Neshatpour et al. [43] propose a Hadoop machine-learning system using
multi-heterogeneous platforms. This work proposes a system including a master desktop
responsible for hosting the Hadoop, and it is connected via a switch to a number of het-
erogeneous FPGA boards. The authors focus more on profiling the characteristics of the
design, such as I/O overhead and kernel movements, to show the potential of the design
and speed up by using the Hadoop framework. However, it is not clear and discussed
in detail the structure of the design in FPGA and its interface between the heterogene-
ous platform itself (data movement between PS and PL part in the heterogeneous FPGA
board) and the host system.

In [2, 17], the authors proposed a Hadoop cluster framework using FPGA boards to
accelerate machine learning applications. In these studies, the goal of the work is to dis-
tribute deep computation load into a Hadoop cluster or cloud of computing nodes and
use FPGAs to accelerate the intensive computational kernels. The crucial point of these
works are; first, there is not a clear design specification to study how the FPGA kernel
units interface with the higher-level hosts; second, the observed speed up is not well
studied against state-of-the-art and against other studies on CPU or GPU.

FDGLib [60] is a lightweight communication library that facilitates the scaling out of
single FPGA-based graph accelerators to a distributed version in a distributed platform
with minimal hardware engineering efforts. To make any graph suitable for this method,
the library provides APIs based on Message Passing Interface (MPI) that can be inte-
grated into FPGA-based graph accelerators with minimal modifications to their existing
code. One of the critical aspects of FDGLib is the substantial preprocessing time over-
head. According to the research paper, the preprocessing time for the smallest evaluated
dataset can take up to 50 s, while in our framework, the preprocessing time is in order
of a few milliseconds to a few seconds, which has a very low impact on the evaluation
of the work described in "Evaluation" section. Furthermore, it should be noted that the

Page 8 of 28Sahebi et al. Journal of Big Data (2023) 10:95

dataset used in the study is relatively small, and as such, the preprocessing time may
have a more significant impact on larger datasets.

Table 1 shows a taxonomy of the selected best existing solutions that are closest to our
work.

Proposed solution
When implementing a large-size graph processor on FPGAs, there are several design
choices to consider. Firstly, due to the limited on-chip memory available on modern
FPGAs, it is necessary to partition the graph into small chunks that can fit into it. This
partitioning method must also produce equally sized chunks, as FPGAs do not support
dynamic memory allocations. Moreover, the partitioning scheme should minimise exter-
nal memory accesses as data transfers introduce a huge amount of overhead and kill the
performance. Secondly, there is a need to design a processing kernel that has a memory
access pattern compatible with the partitioning scheme mentioned above. This allows
for a reduction of the communication overhead as communications are costly, especially
in case host computer memory needs to be read from the accelerator or different accel-
erators. The processing kernel should use the least amount of resources. On FPGAs, par-
allelism is achieved in space by assigning different computational resources to a different

Table 1 Brief overview of the closest recent studies on FPGA accelerators and their features
compared to this work

a Weather the algorithm supports distributed computing
b The programming language used
c Weather the implementation is based on software simulation or actual hardware
d Weather the hardware access to the Host Memory directly
e The scale of the evaluation graph presented dataset. Here, we consider a graph with 10 GB data size as a Medium size
graph
f Weather the work is open-source and available to the public
g The target platform of FPGAs discussed in the paper
h The year the work was published
i Migen, a Python-based tool to export Verilog codes to be synthesised with conventional tools such as Vivado
j The source code is available at: https:// github. com/ AminS ahebi/ distr ibuted- graph- fpga. git

Work Distributed?a Languageb Implementationc Access
to host
 memoryd

Evaluation
 sizee

Public
repository?f

FPGA
 platformg

Published
 yearh

ForeGraph [19] � HDL Simulation × Medium × Xilinx VCU110 2017

FabGraph [51] × HLS Simulation × Medium × Xilinx VCU110
and VCU118

2019

HitGraph [70] × HDL Hardware × Small � Xilinx Virtex
Ultrascale+

2019

ThunderGP [16] × HLS/C++ Hardware × Medium � Alveo Family 2021

GraVF-M [24] � Pythonii Hardware � Medium � Micron Pico
se-6 platform

2019

GridGAS [74] � HDL Hardware � Medium × Xilinx Kintex 2018

FPGP [18] × HDL Hardware × Medium × Xilinx Virtex-7 2016

FDGLib [60] � HDL/C++ Hardware × Small × Alveo Family 2021

Asitatici and
Ienne [6]

× Chisel Hardware × Large � Xilinx Virtex
Ultrascale+
(AWS Platform)

2021

GraphOps [46] × MAXJ Hardware × Small × MAXELER
Boards

2016

This Work � HLS/C++ Hardware � Very Large �j Alveo Family 2022

https://github.com/AminSahebi/distributed-graph-fpga.git

Page 9 of 28Sahebi et al. Journal of Big Data (2023) 10:95

portion of the workload. Computational units can be instantiated multiple times until
there are no resources available. Kernels that use fewer resources can be instantiated
more often, increasing parallelism and performance. The partitioning scheme being dis-
cussed in this study is designed to split the workload among different nodes. The scheme
is similar to the partitioning scheme required for FPGAs. It is applied recursively, once
to partition the graph among different nodes and again to map the subgraphs to on-chip
accelerator memory. This approach allows for efficient and effective use of resources in
distributed and parallel computing environments.

The following section describes the approaches used for the partitioning method, the
single-FPGA and multi-FPGA implementation.

Graph partitioning

A common challenge discussed in the graph computing literature is graph partitioning.
Many works proposed novel techniques and algorithms for graph partitioning [31, 37,
73]. Table 2 shows the best graph partitioning presented in recent studies.

The proposed work involves the GridGraph partition method for dividing the edges
of a graph into smaller groups, called chunks and assigning each group to a specific ver-
tex. The chunks and their corresponding vertex information are then stored on the host
file system. The chunks should be independent of one another, and their size should be
compatible with the size of BRAM on the target FPGA. The Kernel will read the chunks
sequentially from the host memory, and updated values will be written back to the host
memory.

Among the various partitioning techniques present in the literature (see Table 2),
GridGraph offers the best tradeoffs for FPGA acceleration. Hence, the GridGraph par-
titioning method is selected due to its ability to offer high data locality and avoid data
conflicts. This is achieved by dividing the graph into smaller subgraphs called grids, pro-
cessing each grid independently, making it more efficient when large graph processing is
considered [73].

Grids can be mapped on the on-chip resources on the FPGA, improving the perfor-
mance scalability.

An example of graph partitioning with GridGraph is illustrated in Fig. 1, whose vertex
set is divided into two partitions (P), resulting in four equal-length 2x2 grid subsets. It
can be seen that a given directed graph G = (V, E), where V indicates the set of vertices
and E the set of edges1, will be divided into P2 blocks based on the source and destina-
tion vertices. Each edge is placed into a block using the following rule: “the source ver-
tex determines the row of the block, and the destination vertex determines the column of
the block.” Each partition represents outgoing edges for a range of vertices; partition P1
holds outgoing edges for vertex 1, P2 holds for vertex 2, P3 holds for vertex 3, and P4 for
vertices 4 and 5.

The graph is processed by the iterative process in a predetermined sequence. Spe-
cifically, it loads edges from partition P1 and processes them in memory, followed by
loading edges from partition P2 and so on until the last partition P4 is processed. After

1 We use the term “edge” to refer to arcs directed in either direction, although in graph theory the rigorous term for a
directed edge is “arc”.

Page 10 of 28Sahebi et al. Journal of Big Data (2023) 10:95

all the partitions have been processed, the process computes vertex values that may
be stored on disk to end the iteration. This process is repeated for multiple iterations
until a termination condition specific to the algorithm is met. Further details about
the implementation will be presented in the subsequent sections.

Fig. 1 a A given sample graph. b Edge blocks results of preprocessing concept [48]. The ❶, ❷, ❸ and ❹
are referred to as the produced edge blocks using GridGraph partitioning [73]. Here, the number of partitions
is P = 2, producing P2 edge blocks

Table 2 Most recent and well-known graph partitioning techniques suitable for FPGA
implementation

Graph
partitioning
algorithm

Methodology Programming
Language

Graph
partitioning

Source code Platform Year

GridGraph [73] Grid partition of
edges

C++ Store edge
partition blocks
on disk

Public CPU 2015

Lumos [57] Grid partition
of edges plus
cross-iteration
propagation
values support
bulk synchronous
processing

C++ Store edge parti-
tions as blocks
on disk

Public CPU 2020

FabGraph [51] Grid partition of
edges plus hash
partitioning to
support power
law graphs

C++ Store partition
blocks on disk

not public Multi-FPGA 2019

PowerGraph [31] Vertex-cut parti-
tioning

C++, Java, Scala Partitioning dur-
ing Runtime

Public CPU 2013

Graphchi [37] Shard-interval
partitioning plus
sorting, asynchro-
nous processing

HLS Partitioning dur-
ing Runtime

Public Multi-FPGA 2021

ThunderGP [16] Vertex-cut parti-
tioning

HLS-C/C++ Partitioning dur-
ing Runtime

Public single-FPGA 2021

Foregraph [19] Shard-interval HDL Partitioning dur-
ing Runtime

not Public Multi-FPGA 2017

Page 11 of 28Sahebi et al. Journal of Big Data (2023) 10:95

Single‑FPGA graph processing

In a single FPGA workflow, a graph dataset is pre-processed using the partitioning
method described in the "Graph partitioning" section, and the resulting edge blocks are
stored on the host file system. The overall size of graph blocks may exceed terabytes, and
the host memory must be enough to read all these edge blocks from the file system. The
data is loaded into the FPGA’s on-chip memory before it can be processed. Dedicated
FPGA kernels read the data from the stream input provided by the host and direct it
to the FPGA computational units. Once the computation is complete, the aggregated
results are written back to the host memory and stored in its file system.

Figure 2 shows an overview of the single FPGA graph processing unit. In this figure,
on-chip memory is configured to achieve the highest memory bandwidth while keeping
the frequency of the system at its highest.

Multi‑FPGA graph processing

Large graph datasets can easily exceed the computing capabilities of a single machine
(e.g., memory). In distributed computing, data is split among multiple machines, ena-
bling the processing of graphs that are beyond the capabilities of a single machine.
Distributed systems can provide several benefits, including scalability, fault tolerance,
and performance. A distributed system consists of a set of machines working together
as a single virtual system, with each machine or node responsible for processing a
portion of the data. These systems can be manually managed with a custom software
implementation, for example by leveraging the widely used message passing interface
(MPI) [59]. Also managing these systems manually allows for fine-tuning the applica-
tion and enables achieving high performance. This requires significant engineering
effort and expert developers in the context of distributed computing.

Fig. 2 The design system overview of the single-FPGA processing unit

Page 12 of 28Sahebi et al. Journal of Big Data (2023) 10:95

Moreover, custom solutions offer no guarantee in terms of scalability and
performance.

There are a wide variety of frameworks for distributed computing that automate
and overcome most of the challenges mentioned above. Hadoop is a popular open-
source framework that is used for large datasets on clusters of machines. It was cre-
ated by the Apache Software Foundation in 2005, and has since become one of the
well-known used technologies for large data processing [5]. Hadoop is based on the
map-reduce programming model, which allows for the parallel processing of big data
across a distributed platform thanks to the adoption of the Hadoop Distributed File
System (HDFS).

The data is usually stored in a distributed file system, such as Hadoop Distributed
File System (HDFS) or ZFS [47] and processed using a distributed computing frame-
work (e.g., Apache Hadoop). Graph algorithms, such as PageRank, can be imple-
mented on top of these frameworks to process and analyse the graph [22]. The use of
FPGAs in combination with Hadoop for large graph processing is an emerging field
that has gained attention in recent years [11, 53]. By combining Hadoop with FPGAs,
it is possible to take advantage of the scalability and fault-tolerance of Hadoop, while
also leveraging the high performance of FPGAs for graph processing tasks. Adoption
of FPGA with Hadoop is still in the early stages, and more research is needed to ana-
lyse the feasibility of using FPGA combined with Hadoop to accelerate graph process-
ing and optimise the performance of these systems.

Data processing can be divided into two main phases:

1. The first phase is known as the “Map” phase. The data is divided into smaller chunks,
called input splits, and each split is processed by a separate node in the cluster. The
processing that occurs in the Map phase is typically performed by user-defined func-
tions called Mappers, which take the input data and transform it into a set of inter-
mediate key-value pairs;

2. The second phase is known as the “Reduce” phase. The intermediate key-value pairs
from the Map phase are processed by user-defined functions called “Reducers”,
which take the input data and merge it into the final output.

In a map-reduce architecture, a user application launches a root controller and a set
of mappers and reducers, which are distributed across several compute nodes. The
root node coordinates the generation of mappers and reducers and keeps track of
their progress. The overall system overview of the Hadoop map-reduce design is illus-
trated in Fig. 3.

In our case, nodes containing more than one FPGA accelerator are configured in
a way that Hadoop sees them as multiple nodes with a single FPGA. For example,
on a node containing four FPGAs, four different instances of Hadoop are executed,
and the FPGAs are mapped one-to-one to the instances. This design choice greatly
simplifies the design as it removes the need to split the workload between multiple
FPGAs manually. Additionally, it enables the use of Hadoop scheduling for load bal-
ancing and fault tolerance. The Hadoop scheduler can then handle single FPGA fail-
ures without switching offline the entire node.

Page 13 of 28Sahebi et al. Journal of Big Data (2023) 10:95

The proposed large graph processing framework involves three phases:

1. Split the graph into sub-blocks by using the proposed variant of the GridGraph parti-
tioning method (e.g., edge blocks);

2. Execute parallel portion of the graph processing algorithm implementing a custom
Map function (see Fig. 4);

3. Merge the partial results computed on different workers using a custom Reduce
function (see Fig. 5).

Phase 1 can be considered pre-processing, where the graph is partitioned into sub-
graphs, and the various node will process them. This process can be executed in parallel
and consists of a single scan of the graph.

Phase 2 is part of the actual processing. This step consists of executing the graph
processing algorithm on the subgraphs computed in the previous step. This step is

Fig. 3 The Hadoop framework for distributed graph processing [48]

Fig. 4 Map-phase, distribute sub-blocks all over the targets

Page 14 of 28Sahebi et al. Journal of Big Data (2023) 10:95

implemented using a custom Map function. In the proposed architecture, this step com-
putes the PageRank of the subgraph by evaluating the rank equation.

Phase 3 is the final step of the processing. It consists of merging the partial rank vec-
tors into one. In the proposed architecture, this step is optional. Since Mappers save the
results on different files, this step can be used to merge those files into one. However,
depending on the use case, merging the results into one monolithic file might not be
needed.

Phase 1 is repeated two times, the first time to split the graph into subgraphs that are
mapped to nodes and the second time to further split the subgraph into chunks that can
be processed in parallel by the FPGAs. More details about this can be found in "Single-
FPGA graph processing" section. In the case of iterative algorithms, such as PageRank,
phases 2 and 3 need to be executed multiple times until the results converge.

Elaboration
To evaluate the proposed framework, the following steps are taken.

Initially, we defined a theoretical performance model to understand whether or not
some advantage could have been achieved by deploying FPGAs for accelerating part of
the computation. The model is first evaluated by using maximum values for the basic
parameters (e.g., maximum bandwidth for memory, see Table 3). The performance
model evaluation is conducted by using selected datasets, which are large enough in
terms of vertices and edges to identify any potential limitations or issues (see Table 5).
Since FPGA programming requires significant engineering effort, modelling the perfor-
mance using conservative worst-case scenario parameters is necessary to determine the
trade-off between development time and achievable performance [58]. Then, in "FPGA
implementation" section, the methodology adopted to implement optimised graph
algorithms (e.g., PageRank) on cloud-based FPGA devices (e.g., Xilinx Alveo Boards) is
described. Lastly, the performance of the optimised implementation is compared with

Fig. 5 Reduce-phase, gather partial workers’ results to compute the final output

Page 15 of 28Sahebi et al. Journal of Big Data (2023) 10:95

CPU, GPU, and FPGA solutions, and distributed system forecasts are provided (see
"Evaluation" section).

Methodology and baseline

FPGAs are inherently hard to program. Present-day HLS toolchains simplify this pro-
cess. However, deploying an application on FPGA still requires significant engineering
effort. Engineers developed a method to quickly predict the performance of FPGAs and
determine if they can meet the necessary requirements, reducing wasted time and effort
[58]. In this study, we employ this methodology to guide the FPGA development pro-
cess. The exact details of this methodology are not part of this study, but the main steps
are briefly summarised. The first step involves analysing the algorithm and drafting a
possible FPGA architecture. This architecture is then analysed, accounting for input size,
data transfers, the bandwidth of the interconnects and accelerator characteristics. FPGA
performance is predictable and can be estimated “a priori” by analysing the workload
and using a set of linear equations [58]. This performance forecast is then evaluated, and
in case the performance requirements are not met, the previous steps are repeated mul-
tiple times with new and improved FPGA architecture candidates. Once an FPGA archi-
tecture candidate is found, there is a need to produce a software model that simulates
the FPGA architecture exactly. Using metrics from the software model, the performance
forecasts are refined, and if needed, the architecture is changed accordingly. For the sake
of clarity, the various intermediate architectures that are developed and refined at each

Table 3 Baseline assumption and notations used in the baseline study

Symbol Meaning Con‑stant
value(if any)

|V | Number of vertices

|E| Number of edges

Sv Size of a vertex (Byte) 4

Se Size of an edge (Byte) 8

datawidth Depending on the scenario (1024, 2048, 4096) 2048

P2 The graph will be portioned into P × P edge-blocks

Sblock Size of an edge-block (MB) 10

fFPGA Clock Frequency MHz 200

Tcomp Time to process (read/Write to/from-chip BRAM)

Tcomm Time to move data from host memory to FPGA

Tinit Time to load the libraries (reduced after the first run)

TPCIe Time to interconnect between boards

Tmem Time to transfer data (loading blocks) between off-chip memory and PEs

Tbaseline Time for CPU-only

TFPGA Execution time in FPGA only

Sbram BRAM storage size [it should be higher or equal to the size of each edge block
Sbram ≥ Sblock(i,j)] (MB)

54

BWmem DDR4-2400 (GB/s) 19.2

BWPCIe PCIe 3.0 bandwidth ×16 (GB/s) 32

effPCIe PCIe efficiency 0.8

effmem Memory efficiency 0.8

SL Number of SLRs in the FPGA die 4

Page 16 of 28Sahebi et al. Journal of Big Data (2023) 10:95

iteration are omitted. Only the final version is described. The assumption and notations
used in the baseline model are presented in Table 3. The model is general and can be
applied to any FPGA by inputting the correct parameters. However, the results show the
baseline only for our selected FPGA accelerator, as it is the FPGA device available for
this study (see "FPGA implementation" section). The most important formulas used in
this forecast are summarised in Table 4. Some formulas related to the data partitioning
are extracted from the work presented in [73].

Tables 6, 7, and 8 show the performance based on the system characteristics and
assume the use of Xilinx Alveo U250 in our performance model. As can be seen, the
anticipated speedup is calculated based on the computation time, communication time,
and other overheads and bottlenecks such as PCIe Rate. The efficiency of the PCIe bus is
set to 0.85 of its ideal performance. This is a worst-case scenario, where the application,
encoding and packaging of data reduce the bandwidth by 15%.

Table 6 shows the loading time from the host memory to the FPGA device’s global
memory. Here, Tmem is evaluated on the graph data and the maximum performance of
the DDR4-2400, which is installed on the host system.

Table 7 shows the computation and communication time that needs to be done from
the host to the FPGA device. These results are derived from the previous Table 6. Note
that data is assumed to be already loaded in the memory of the host system; the time to
read data from the host file system is omitted.

Finally, Table 8 shows the overall speedup against the same algorithm on the CPU. The
values presented in this table are derived from the two previous Tables 6 and 7 discussed
in this section. The number of partitions is assumed to be constant in all graph datasets,
and the number of Super Logic Regions (SLRs) for this evaluation is assumed to be one.
SLRs are specific areas of the FPGA fabric that can be used to implement logic functions
or memory elements. By allocating each kernel to a specific SLR and dedicating the nec-
essary memory channel, the design can be optimised and the scalability improved. The
baseline shows transferring edge blocks with bigger sizes is better compared to the CPU
baseline, and this is the potential of the design, which is suitable for very big graph data-
sets. Based on this performance evaluation, we achieved close to ∼ 13 times (Friendster
dataset) more than the baseline implementation on the CPU.

Table 4 Formulas used in the baseline study

Formula Description

P =

∣

∣

∣

√

Se×|E|
Sblock

∣

∣

∣

Total number of partitions based on GridGraph preprocessing

Sizedata = Sblock × P2 Edge block size to be processed

BWBRAM =
datawidth×fFPGA

Se
BRAM Bandwidth calculation

Tmem =
|V |·Sv+|E|·Se
BWmem×effmem

Load time for Vertex and Edges data from/to Global Memory
to/from PEFPGA

TPCIe =
sizedata

BWPCIe×effPCIe
PCIe transfer time

Tcomm = Tinit + TPCIe + Tmem Transfer time from/to CPU host to/from PEFPGA

TFPGA = Tcomm + Tcomp Total time for FPGA

Tcomp =
|V |+|E|
BWBRAM

Computation time in the FPGA

S =
Sbaseline
SFPGA

Speedup over the baseline execution time

Page 17 of 28Sahebi et al. Journal of Big Data (2023) 10:95

In other words, our model shows that FPGAs have the potential to be one order of
magnitude faster than CPUs for graph processing. Hence, the proposed architecture is
developed and implemented onto FPGA. The following "FPGA implementation" section
shows technical details of the implementation.

FPGA implementation

The baseline study presented in the previous section demonstrated the advantages of
using FPGAs for graph processing. In this section, the goal is to present the implemen-
tation details and optimisations used to develop the final graph processing framework.
Vivado HLS toolchain (version 2022.2) is used for the algorithm implementation on the
available Xilinx Alveo U250 board, which contains a Xilinx VU13P FPGA.

Xilinx Alveo boards are Data Center accelerator cards that are specifically designed to
meet the evolving needs of modern Data Centers, including machine learning inference,
video transcoding, and database search and analytics [56]. Figure 6 illustrates the Xilinx
Alveo U250 block diagram and its interface with the host system. The Vivado design
suite (Vitis version 2022.2) is used to develop and implement the target architecture. The
implementation is divided into two parts: Kernel implementation and Host program. The
host code is responsible for the software-based part of the design, which will be exe-
cuted on the CPU. This part resides on the host system and will schedule the loading of
the edge blocks, transfer them to the associated kernels, and, finally, drive kernel execu-
tion. Moreover, the host program is responsible for managing the Xilinx Runtime inter-
face (XRT) and programming the bitstream, that is, programming the FPGA to carry out
the required computation.

On the other hand, kernel implementation is the part of the application that is exe-
cuted by the FPGA. The kernel is written in HLS and designed to optimally uses accel-
erator resources for the best performance. In this study, the kernels implement the graph
processing algorithm. Host code and kernels are compiled with a V++ compiler (Vitis
C++ compiler with the -O2 optimisation flag).

The following sections describe in detail the Host program, the Kernel implementa-
tion, and the optimisation techniques used for the hardware implementation.

Host program

The host program can be divided into two main sections.
The first section is to receive the graph and prepare the pre-processed graph data and

their parameters. These include the graph block path, the number of vertices, the num-
ber of edges, the number of partitions, and edge blocks. Once the graph information is
loaded into the host memory, the host program starts to further process data and fetches
blocks from the disk to the host RAM. This procedure is out of the evaluation time
measurement zone. This methodology is also used in previous studies such as [16, 51].

The next step is to create buffers to keep aligned all data in the memory. This is
required to achieve high performance, as the runtime system (XRT) complains about
memory misalignment. However, this adds extra “memcpy” during the runtime leading
to a longer execution time.

Page 18 of 28Sahebi et al. Journal of Big Data (2023) 10:95

After creating an aligned vector and fetching all necessary information of edge blocks
in the Host memory, the bridge between the host and kernels needs to be created. This
bridge consists of runtime buffers and commands to program the FPGA device with the
bitstream. Finally, data exchange between Host Memory and Kernel local memory (e.g.,
BRAM) is implemented using OpenCL functions and specific FPGA kernels.

The last step is to instantiate and configure the kernels for the execution within the
host code orchestration.

FPGA kernels

The efficiency of the FPGA implementation is primarily affected by the use of structures
like local arrays. These memory elements are used to store data for a specific function
or operation in FPGA. The implementation of local arrays requires utilising memory
resources in terms of Lookup Tables (LUTs), Block RAM (BRAM), and registers. How-
ever, we needed to carefully allocate local arrays to utilise the resources provided by the
FPGA fully.

One way to minimise resource utilisation (e.g., BRAM) and accommodate big local
arrays on FPGAs is by partitioning the local arrays and streaming data through small
and fast FIFOs (“DATAFLOW” and “PARTITION” keywords).

The Vitis compiler builds a single hardware instance from a kernel implementation.
If the host program executes the same kernel multiple times due to data processing
requirements, it must do so on the FPGA accelerator sequentially. The order in which
kernels are executed has an influence on overall application performance. In the pro-
posed design, the kernel linking stage is tuned so that a single kernel can instantiate sev-
eral hardware compute units (CUs). The host program makes several overlapping kernel
calls, executing kernels concurrently by running independent compute units, which
increases the performance. In the connectivity configuration of Alveo Boards, the allo-
cation of kernels to specific SLRs of the FPGA and the allocation of memory channels
is performed in order to optimise the design and improve the scalability. Although the
PCIe interface of the Alveo boards has 16 lanes, only 15 lanes can be connected to the
kernel instances so that they can communicate with the host simultaneously (this is also
confirmed by the official documentation since we must keep one lane for the XRT runt-
ime). Exploiting multiple PCIe lanes significantly optimises the design and the scalabil-
ity, resulting in a close to 7× speedup when using multiple kernels compared to a single
sequential kernel execution (see Fig. 7).

Hadoop performance model

In this study, we just focused on the FPGA acceleration rather than the Hadoop scal-
ability details, as the map-reduce programming model has been extensively studied in
the literature, and its performance is modelled and predictable [21, 34]. Thus, for the
purpose of this study, we forecast the performance by leveraging previous studies that
analyse the efficiency of algorithms implemented in map-reduce.

Before starting the analysis, it is necessary to highlight some assumptions:

• The graph is stored on the Hadoop Distributed File System (HDFS);

Page 19 of 28Sahebi et al. Journal of Big Data (2023) 10:95

• The graph is partitioned in parallel by a MapReduce job or custom partitioner.

The first assumption is valid as we target large-scale graphs, which would be far too
large to be fit in a single node, hence it is likely that they are already stored in a distrib-
uted file system. The second assumption is valid as long as the first assumption is valid.
Once the graph is placed on the file system, any pre-processing could be done directly in
MapReduce.

Given the previous assumptions, the scale of the graph requires a distributed system to
be analysed as a single parallel node would require an unrealistic amount of time. In this
study, we analyse the benefit of adding FPGA acceleration to an existing cluster, and the
comparison is between a Hadoop cluster with and without FPGA accelerators.

In our proposed architecture, FPGA accelerators are used only in mappers to compute
a partial state. The above formula is needed only to account for how a faster mapper will
impact the total computation time.

As mentioned above, a Hadoop cluster is not available for this study, and we cannot
provide experimental results. Thus, we only provide forecasts based on Hadoop perfor-
mance models’ algorithmic complexity and link-speed assumptions [21, 34].

The users that already execute distributed graph processing on a Hadoop cluster could
use the following formula (Eq. 1) to obtain more accurate performance forecasts by sub-
stituting profiler results:

where: Tsplit−input time needed to partition the graph in sub-graphs; N is the num-
ber of iterations of the iterative algorithm; Toverhead is the overhead introduced by
map-reduce; Tscatter is the time needed to distribute the state vector to all the work-
ers; max(Tmap) is the time needed by the slowest mapper; Ttransfer is the time needed to
transfer the state vector to the reducers (account for shuffle and sort); Treduce is the time
needed to aggregate the partial state vectors.

Evaluation

This section presents the results of the optimised version of the PageRank algorithm for
large-scale graph processing using cloud-based FPGA accelerators. In large graph pro-
cessing, PageRank is often used as a benchmark to evaluate the performance of different
graph processing algorithms and systems. PageRank is one of the most computationally
intensive graph algorithms, and it requires processing a large number of vertices and
edges. PageRank is an algorithm used to evaluate the importance of each vertex in a
graph. It has been initially used by commercial search engines to rank web pages by their
importance. The algorithm assigns a score, called the PageRank score, to each vertex in
the graph. The score is determined based on the number and importance of the vertices
that point to it. Vertices with a higher PageRank score are considered more important
than those with a lower score. By using PageRank as a benchmark, it is possible to meas-
ure the performance of the proposed model in terms of its ability to handle large-scale
graph data efficiently.

(1)T = Tsplit−input + Toverhead + N (Tscatter +max(Tmap)+ Ttransfer + Treduce)

Page 20 of 28Sahebi et al. Journal of Big Data (2023) 10:95

We compare the performance of the proposed implementation of the PageRank algo-
rithm, presented in "FPGA implementation" section, against CPU and GPU and FPGA
architectures. The real hardware implementation has been done on a Xilinx Alveo U250
from the Xilinx Adaptive Compute Clusters (XACC) [3]. Each XACC server equally dis-
tributes resources into several Virtual Machines (VM) such that each VM has access to
one FPGA card. The VM software environment is based on Ubuntu 20.04 and includes
software frameworks for FPGA accelerator deployment (e.g., Vitis, Vivado HLS). Table 9
reports the specification of the server and hardware accelerator specifications. For the
CPU comparison with PageRank, we used a sequential version, an OpenMP multicore

Table 5 The datasets for evaluating our proposed study

We choose them based on the size and the structure of the datasets to be comparable with other works

Graph dataset Vertices Edges Size (GB) Type

LiveJournal [38] 4.8M 0.069 B 1.1 Social web

Web-UK-2005 [12] 39M 0.994 B 16 Web graph

Twitter [36] 41.6 M 1.47 B 23 Web graph

Friendster [38] 68.3M 2.58 B 43 Social web

Table 6 Load time for vertices and edges data from global memory to FPGA-PEs (efficiency = 0.8)

Dataset Vertices Edges Sv (bytes) Se (bytes) Tmem (s) BWMem (GB/s)

LiveJournal 4.85 M 0.069 B 4 8 0.0372 19.2

Web-UK-2005 39.1 M 0.994 B 4 8 0.49 19.2

Twitter 42.1 M 1.47 B 4 8 0.776 19.2

Friendster 68.3 M 2.58 B 4 8 1.36 19.2

Table 7 Computation and Communication Time from CPU host to FPGA

Dataset PCIe‑3 16‑lane
data rate (GB/s)

Data Size (GB) TPCIe (s) Tinit (s) Tcomm (s) Tcomp (s)

LiveJournal 32 0.526 0.0244 0.1 0.16 1.76

Web-UK-2005 32 7.2 0.27 0.1 0.87 23.2

Twitter 32 11.2 0.44 0.1 1.32 36.00

Friendster 32 20.2 0.7 0.1 2.23 101

Table 8 The performance model report, which has been calculated based on the bottlenecks like
PCIe Rate, Computation time, Communication time, etc. Here the number of Super Logic Region
(SLR) used is equal to 1

Dataset Partitions SLRs TFPGA (s) Tbaseline (s) Speedup

LiveJournal 16 1 1.92 12.86 6.7

Web-UK-2005 16 1 24.14 270 9.9

Twitter 16 1 37.3 538.1 7.2

Friendster 16 1 197.8 1340 12.6

Page 21 of 28Sahebi et al. Journal of Big Data (2023) 10:95

version [15], and GridGraph library [32] as it is one of the most efficient graph process-
ing frameworks on the CPU. The OpenMP version for this evaluation is version 4.0.3,
and GCC version 9.4.0 is used to compile the software. Regarding the GPU implementa-
tion, we used the cuGraph library [25] for comparison with the CUDA toolkit version
11.7. “cuGraph” is an open-source GPU graph analytics library that is built on top of
the RAPIDS ecosystem [25]. It provides a high-performance, easy-to-use, and extensible
framework for graph analysis on GPUs. In our experiments, we used the NVIDIA V100
GPU, which is a high-performance GPU based on the Volta architecture.

We selected four different sizes of graphs from the datasets listed in Table 5, from
a small size graph (LiveJournal) to a large size one (Friendster), to evaluate our opti-
mised version of the PageRank algorithm on a single FPGA. These datasets were

Fig. 6 Alveo U250 accelerator card. Some parts are skipped for readability

Fig. 7 The scalability of the proposed design

Table 9 The XACC server is used to evaluate the real implementation

Instance Name CPU CPU Freq Cores Memory FPGA board

alveo1.ethz.ch 2× Intel Xeon Gold 6234 3.30 GHz 16 376 GiB Alveo U250

Page 22 of 28Sahebi et al. Journal of Big Data (2023) 10:95

chosen to evaluate the performance when the size of the graph grows to sizes that
exceed the memory capacity of the CPU or GPU device memories.

Figure 8 shows that our proposed FPGA implementation of PageRank significantly
outperforms the sequential and OpenMP execution on CPU for all of the datasets. The
speedup achieved with CPU ranges from about 9.7x with the smallest dataset up to
about 26x in the case of the Twitter dataset.

We also compared our algorithm with the GridGraph library [32], which uses a grid
partition schema similar to ours and uses OpenMP for parallel execution. Our imple-
mentation demonstrates a performance improvement over the GridGraph library, with
a potential speedup of 4x (Web-UK-2005). In addition to outperforming the CPU solu-
tions, our FPGA implementation demonstrates significant performance improvements
over the cuGraph library running on the selected GPU. The speedup achieved compared
to the GPU reaches up to 4.5x with the Web-UK-2005 graph dataset. This dataset does
not fit in the on-chip memory of the GPU and requires the use of the Unified Mem-
ory [39]. Data needs to be transferred back and forth between the host memory and
the GPU on-chip memory, which incurs additional overhead and degrades performance.
Moreover, the GPU experiments with bigger datasets (Twitter and Friendster) failed due
to insufficient memory on the GPU board.

This shows the benefits of using an FPGA for graph processing tasks, especially when
dealing with large datasets. We also compared our custom FPGA implementation with
the PageRank algorithm available in the Vitis Library, as available in the literature [63],
As shown in Fig. 8, our implementation achieves a speedup of about 28x over that
library.

Our implementation demonstrates significant performance improvements over tradi-
tional CPU-based solutions, such as sequential execution, OpenMP parallel execution,
and the GridGraph library, as well as over GPU-based solutions like the cuGraph library
and pre-built FPGA libraries like Vitis’ library. The speedup achieved with our imple-
mentation highlights the benefits of using a custom FPGA implementation for graph
processing tasks, especially when dealing with large datasets that do not fit in on-chip
memory. These results demonstrate that our FPGA implementation is a suitable solution
for accelerating graph processing tasks.

Figure 9 shows the speedup achieved by our proposed solution in relation to the
size of the graph. Small graphs like LiveJournal show a speedup of about 10x. Bigger
graphs like Web-UK-2005 show a speedup of about 14x, and larger graphs like Twit-
ter show a speedup of about 26x. It is worth noting that speedup almost doubles from
Web-UK-2005 to Twitter, even if Twitter’s size is about 1.5 larger than Web-UK-2005
(see Table 5). However, the performance boost that is achieved by the proposed work
decreases when using the larger Friendster dataset. This saturation in performance has
prompted us to investigate whether a multi-FPGA solution in a distributed system, like
Hadoop, could potentially enhance the usage of FPGAs for large-scale graph processing.

Graphs bigger than Friendster exceed the computing capabilities of present-era
machines. Hence, a possible solution to manage such large graphs is to divide them
across multiple machines by means of distributed computing. Figure 10 presents
the forecasts for integrating FPGA acceleration in a Hadoop-distributed cluster for

Page 23 of 28Sahebi et al. Journal of Big Data (2023) 10:95

Table 10 Alveo U250 platform experimental results in comparison to a software baseline and state-
of-the-art FPGA works. Reported numbers are all in Seconds

a CPU details are described in Table 9
b The GPU used for the experiments is a NVIDIA Volta V100
c N/A indicates that the mentioned study didn’t report this dataset evaluation
d The experiment hit the GPU memory limit

Dataset Sequential (CPUa) OpenMP (CPUa) GridGraph
 (CPUa)

cuGraph (GPUb) Vitis
Library
(FPGA)

Our
work
(FPGA)

LiveJournal 27.01 5.49 3.54 5.28 79.79 2.78

Web-UK-2005 275.44 185.4 34.9 90.73 N/Ac 20.6

Twitter 1443 658.5 88.5 Failedd N/Ac 55.6

Friendster 2258 950 141 Failedd N/Ac 95.4

Fig. 8 Speedup evaluation of the proposed FPGA PageRank algorithm (our work) with the CPU, GPU, and
FPGA solutions for the LiveJournal, Web-UK-2005, Twitter and Friendster datasets

Fig. 9 Speedup evaluation of the proposed implementation over the size of the graphs versus sequential
execution. GB=Gigabytes

Page 24 of 28Sahebi et al. Journal of Big Data (2023) 10:95

large-scale graph processing. Profiling the code and using the results to evaluate Eq. (1)
shows that using FPGAs is only effective if a significant amount of time is spent in the
mapping phase. In the forecasts, we assume that most of the time is spent in the map-
ping phase, specifically 51% of the total time. Under these conditions, using the results
from Table 10, assuming a worst-case scenario where FPGA accelerated nodes achieve
only a 20x speedup compared to a CPU only nodes, and substituting them in Eq. (1),
the forecasts show that it is possible to improve performance by reducing the total time
by 54%. However, in a most realistic case scenario, most of the time is spent in the map-
ping phase, assuming 80% as a realistic assumption when using a partition method like
GridGraph to minimise the data transfer. In this case, the time reduction achieved by a
hybrid CPU-FPGA Hadoop cluster can grow to 84% compared to a CPU-only cluster.
Figure 10 summarise these forecasts and also shows the best-case (but unlikely) scenario
where 90% of the total execution time is spent in the mapping phase, showing that it is
possible to achieve over 90% time reduction under best conditions.

Conclusions
Large graph processing is an emerging field that deals with the analysis and manipula-
tion of large and complex graphs, such as social networks, web graphs, road networks,
and biological networks. With the increasing amount of data generated by these applica-
tions, the size of graphs is rapidly growing. As a result, the need for efficient and scal-
able graph processing techniques is becoming increasingly important. Combining the
use of FPGAs with Hadoop for handling large graph datasets is a growing area of inter-
est. FPGAs are specialised integrated circuits that can be customised for specific tasks
and are highly efficient in executing graph processing algorithms. Hadoop is an open-
source framework commonly used for distributed processing of large datasets. We show
that utilising FPGA architecture in conjunction with graph partitioning can lead to high
performance without limitations on the graph sizes, even when dealing with millions
of vertices and billion of edges. In the case of the PageRank algorithm, for example, our
optimised FPGA version is faster than any state-of-the-art implementation. The evalua-
tion results demonstrate that our implementation outperforms GridGraph [32] by 2×,

Fig. 10 Time reduction achieved using FPGAs to accelerate graph processing compared to using a Hadoop
cluster with no FPGA

Page 25 of 28Sahebi et al. Journal of Big Data (2023) 10:95

Cugraph [25] by 4.4× and VITIS LIB [4] by 26×. This highlights the efficiency of using
custom FPGA implementations for graph processing tasks, particularly when dealing
with large datasets that exceed the capacity of on-chip memory. Given that large-scale
graphs can exceed the computational capabilities of a single machine, we analysed the
benefits of our architecture in the context of distributed computing. The combination
of FPGAs and distributed frameworks, such as Hadoop, can significantly enhance per-
formance, particularly for large-scale datasets. The forecasts show that using FPGAs in
a Hadoop cluster can reduce the processing time from 59% in the worst-case scenario
to over 93% under the best conditions. Our current focus is on implementing additional
optimisations to achieve even higher performance on large-scale graph processing.
Acknowledgements
We would like to thank the Xilinx/AMD Adaptive Compute Cluster (XACC) program for their generous accelerator card
donations and allowing us to use XACC at ETH Zürich University, and for providing us with the necessary resources and
support to conduct our research. We would also like to extend a special thank you to Dr Mario Daniel Ruiz Noguera from
Xilinx/AMD for his outstanding technical support and guidance throughout the duration of the program. Additionally,
we would like to express our appreciation to Xilinx/AMD and NVIDIA for their continuous support and donation of hard-
ware devices to our research laboratory. These contributions have been invaluable in allowing us to conduct cutting-
edge research in large-scale computing.

Author contributions
The Authors equally contributed to this paper. All authors read and approved the final manuscript.

Funding
This work was partly supported by UK EPSRC grants (UK EPSRC grants EP/L016796/1, EP/N031768/1, EP/P010040/1, EP/
V028251/1 and EP/S030069/1), by the Cancer Research UK programme grant C33589/A19727, by European Commission
under the AXIOM H2020 (id. 645496), TERAFLUX (id. 249013), and HiPEAC (id. 871174) projects.

Availability of data and materials
The datasets used and analysed during the current study are available from the corresponding authors upon reasonable
request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 30 January 2023 Accepted: 8 May 2023

References
 1. Alexandrov A et al. The stratosphere platform for big data analytics. VLDB J. 2014;23(2014):939–64.
 2. Abdulrahman A et al. FPGA-accelerated hadoop cluster for deep learning computations. In: 2015 international

conference on data mining workshop (ICDMW). Atlantic City: IEEE; 2015. p. 565–74.
 3. AMD Xilinx. Heterogeneous accelerated compute clusters. 2023. https:// www. amd- haccs. io/ Accessed 30 Jan 2023.
 4. AMD Xilinx. Xilinx vitis accelerated libraries. 2023. https:// github. com/ Xilinx/ Vitis_ Libra ries Accessed 30 Jan 2023.
 5. Apache Hadoop. Hadoop. https:// hadoop. apache. org/ Accessed 30 Jan 2023.
 6. Asiatici M, Ienne P. Large-scale graph processing on FPGAs with caches for thousands of simultaneous misses.

In: 2021 ACM/IEEE 48th annual international symposium on computer architecture (ISCA). Valencia: ACM/IEEE;
2021:609–622.

 7. Bachrach J et al. Chisel: constructing hardware in a Scala embedded language. In: DAC design automation confer-
ence 2012. San Francisco: ACM; 2012. p. 1212–21.

 8. Barbone M, Howard A, Tapper A, Chen D, Novak M, Luk W. Demonstration of FPGA acceleration of monte carlo
simulation. J Phys Conf Ser. 2023;2438(2023):012–23.

https://www.amd-haccs.io/
https://github.com/Xilinx/Vitis_Libraries
https://hadoop.apache.org/

Page 26 of 28Sahebi et al. Journal of Big Data (2023) 10:95

 9. Barbone M, Kwaadgras BW, Oelfke U, Luk W, Gaydadjiev G. Efficient table-based polynomial on FPGA. In: 2021 IEEE
39th international conference on computer design (ICCD). Storrs: IEEE, virtual conference; 2021;374–382.

 10. Besta M et al. Graph processing on FPGAs: taxonomy, survey, challenges 2019. arXiv: 1903. 06697 [cs.DC].
 11. Bobda C, et al. The future of FPGA acceleration in datacenters and the cloud. ACM Trans Reconfigurable Technol Syst

(TRETS). 2022;15(3):1–42.
 12. Boldi P, Vigna S. The web graph framework I: compression techniques. In: Proceedings of the ACM thirteenth inter-

national world wide web conference (WWW 2004). Manhattan: ACM Press; 2004. p. 595–601.
 13. Bongini P, et al. Modular multi-source prediction of drug side-effects with DruGNN. IEEE/ACM Trans Comput Biol

Bioinform. 2022;20(2):1211–20.
 14. Chakrabarti D, Zhan Y, Faloutsos C. R-MAT: a recursive model for graph mining. In: SDM. Lake Buena Vista: USA; 2004.

p. 442–6.
 15. Chandra R, et al. Parallel programming in OpenMP. San Diego: Morgan kaufmann; 2001.
 16. Chen X, Tan H, Chen Y, He B, Wong WF, Chen D. ThunderGP: HLS-based graph processing framework on FPGAs. In:

The 2021 ACM/sigda international symposium on field-programmable gate arrays (Virtual Event, USA) (FPGA’c21).
New York: Association for Computing Machinery; 2021. p. 69–80

 17. Chung CC, Wang YH. Hadoop cluster with FPGA-based hardware accelerators for K-means clustering algorithm. In:
2017 International conference on consumer electronics (ICCE-TW). Taiwan: IEEE; 2017. p. 143–4.

 18. Dai G, Chi Y, Wang Y, Yang H. FPGP: graph processing framework on fpga: a case study of breadth-first search. In:
Proceedings of the 2016 ACM/SIGDA international symposium on field-programmable gate arrays (FPGA’16). New
York: Association for Computing Machinery;2016. p. 105–110.

 19. Dai G, Huang T, Chi Y, Xu N, Wang Y, Yang H. ForeGraph: exploring large-scale graph processing on Multi-FPGA
architecture. In: Proceedings of the 2017 ACM/SIGDA international symposium on field-programmable gate arrays
(Monterey, California, USA) (FPGA’17). New York: Association for Computing Machinery. p. 217226.

 20. Dann J, Ritter D, Fröning H. Demystifying memory access patterns of FPGA-based graph processing accelerators.
In: Proceedings of the 4th ACM SIGMOD joint international workshop on graph data management experiences
and amp; systems (GRADES) and network data analytics (NDA) (virtual event, China) (GRADES-NDA’21). New York:
Association for Computing Machinery; 2021. p. 10.

 21. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.
 22. Elser B, Montresor A. An evaluation study of BigData frameworks for graph processing. In: 2013 IEEE international

conference on big data. Silicon Valley: IEEE; 2013. p. 60–7.
 23. Engelhardt N, So HK. GraVF: A vertex-centric distributed graph processing framework on FPGAs. In 26th interna-

tional conference on field programmable logic and applications (FPL). Lausanne: IEEE; 2016. p. 1–4.
 24. Engelhardt N, So HK. GraVF-M: graph processing system generation for multi-FPGA platforms. ACM Trans Reconfig-

urable Technol Syst. 2019;12(4):28.
 25. Fender A, Rees B, Eaton J. RAPIDS cuGraph. In: Massive graph analytics. Santa Clara: Chapman and Hall/CRC; 2022. p.

483–93.
 26. Finnerty E, Sherer Z, Liu H, Luo Y. Dr. BFS: data centric breadth-first search on FPGAs. In: 56th design automation

conference (DAC). Las Vegas: ACM/IEEE; 2019. p. 1–6.
 27. Giorgi R, Khalili F, Procaccini M. AXIOM: a scalable, efficient and reconfigurable embedded platform. In: IEEE Proc.

DATEi. Florence: IEEE; 2019. p. 1–6.
 28. Giorgi R, Khalili F, Procaccini M. Translating timing into an architecture: the synergy of COTSon and HLS (Domain

expertise - designing a computer architecture via HLS). London: Hindawi-International Journal of Reconfigurable
Computing; 2019. p. 1–18.

 29. Giorgi R, Procaccini M. Bridging a data-flow execution model to a lightweight programming model. In: 2019 Interna-
tional conference on high performance computing and simulation (HPCS). Dublin: IEEE; 2019. p. 165–8.

 30. Giorgi R, Procaccini M, Sahebi A. DRT: a lightweight runtime for developing benchmarks for a dataflow execution
model. In: Architecture of computing systems, 34th international conference, ARCS 2021, virtual event, June 7–8,
2021, Proceedings, vol. 12800. New York: Springer; 2021. p. 84–100.

 31. Gonzalez JE, et al. PowerGraph: distributed graph-parallel computation on natural graphs. In: Proceedings of the
10th USENIX conference on operating systems design and implementation, (Hollywood, CA, USA) (OSDI’12). Berke-
ley: USENIX Association; 2012. p. 17-30.

 32. GridGraph. GridGraph. https:// github. com/ thu- pacman/ GridG raph Accessed 30 Jan 2023.
 33. Heidari S, Simmhan Y, Calheiros RN, Buyya R. Scalable graph processing frameworks: a taxonomy and open chal-

lenges. ACM Comput Surv (CSUR). 2018;51(3):1–53.
 34. Karloff H, Suri S, Vassilvitskii S. A model of computation for mapreduce. In: Proceedings of the twenty-first annual

ACM-SIAM symposium on discrete algorithms. SIAM, ACM: Austin; 2010. p. 938–948.
 35. Kavi KM, Giorgi R, Arul J. Scheduled dataflow: execution paradigm, architecture, and performance evaluation. IEEE

Trans Comput. 2001;50(8):834–46.
 36. Kunegis J. KONECT: The Koblenz network collection. In: Proceedings of the 22nd international conference on world

wide web (Rio de Janeiro, Brazil) (WWW’ slashhc13 Companion). New York: Association for Computing Machinery;
2013. p. 1343–1350.

 37. Kyrola A, Blelloch G, Guestrin C. GraphChi: Large-scale graph computation on just a PC. In Proceedings of the 10th
USENIX conference on operating systems design and implementation (Hollywood, CA, USA) (OSDI’12). Berkeley:
USENIX Association; 2012. p. 31–46.

 38. Leskovec J, Krevl A. SNAP datasets: stanford large network dataset collection 2014. http:// snap. stanf ord. edu/ data.
Accessed 30 Jan 2023.

 39. Li W, Jin G, Cui X, See S. An evaluation of unified memory technology on NVIDIA GPUs. In: 2015 15th international
symposium on cluster, cloud and grid computing. Shenzhen: IEEE/ACM; 2015. p. 1092–8.

http://arxiv.org/abs/1903.06697
https://github.com/thu-pacman/GridGraph
http://snap.stanford.edu/data

Page 27 of 28Sahebi et al. Journal of Big Data (2023) 10:95

 40. Liu C et al. OBFS: OpenCL based BFS optimizations on software programmable FPGAs. In: 2019 International confer-
ence on field-programmable technology (ICFPT). Tianjin: IEEE; 2019. p. 315–8.

 41. Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM. GraphLab: a new parallel framework for machine
learning. In: Conference on uncertainty in artificial intelligence (UAI). Catalina Island: UAI press; 2010. p. 340–9.

 42. Lu Y. GraphPEG: accelerating graph processing on GPUs. ACM Trans Archit Code Optim (TACO). 2021;18(3):1–24.
 43. Neshatpour K, Malik M, Homayoun H. Accelerating machine learning kernel in hadoop using FPGAs. In: 15th Inter-

national symposium on cluster. Shenzhen: Cloud and Grid Computing IEEE/ACM; 2015. p. 1151–4.
 44. Nisar MU, Fard Arash, Miller John A. Techniques for graph analytics on big data. In: International congress on big

data. Santa Clara: IEEE; 2013. p. 255–62.
 45. Nurvitadhi E et al. GraphGen: an FPGA framework for vertex-centric graph computation. In: 22nd annual interna-

tional symposium on field-programmable custom computing machines. Orlando: IEEE; 2014. p. 25–8.
 46. Oguntebi T, Olukotun K. GraphOps: a dataflow library for graph analytics acceleration. In: Proceedings of the 2016

ACM/SIGDA international symposium on field-programmable gate arrays (Monterey, California, USA) (FPGA ’16).
New York: Association for Computing Machinery; 2016. p. 111–117.

 47. Rodeh O, Teperman A. zFS-a scalable distributed file system using object disks. In: 20th NASA goddard conference
on mass storage systems and technologies (MSST). San Diego: IEEE; 2003. p. 207–18.

 48. Sahebi A. Reconfigurable architectures for accelerating distributed applications. 2022.
 49. Sakr S, Bonifati A, et al. The future is big graphs: a community view on graph processing systems. Commun ACM.

2021;64(9):62–71.
 50. Sakr S, Orakzai FM, Abdelaziz I, Khayyat Z. Large-scale graph processing using Apache Giraph. New York: Springer;

2016.
 51. Shao Z, Li R, Hu D, Liao X, Jin H. Improving performance of graph processing on FPGA-DRAM platform by two-level

vertex caching. In: Proceedings of the international symposium on field-programmable gate array. Seaside: ACM/
SIGDA; 2019. p. 320–329.

 52. Siddique K, et al. Apache Hama: an emerging bulk synchronous parallel computing framework for big data applica-
tions. IEEE Access. 2016;4(2016):8879–87.

 53. Skhiri R, Fresse V, Jamont JP, Suffran B, Malek J. From FPGA to support cloud to cloud of FPGA: state of the art. Int J
Reconfigurable Comput. 2019;2019(2019):1–17.

 54. Smith JS, Roitberg AE, Isayev O. Transforming computational drug discovery with machine learning and AI. ACS Med
Chem Lett. 2018;9:1065–9.

 55. UG1023. SDAccel environment user guide. 2023. https:// www. xilinx. com/ suppo rt/ docum entat ion/ sw_ manua ls/
xilin x2019_1/ ug1023- sdacc el- user- guide. pdf Accessed 25 Jan 2023.

 56. UG1270. Vivado HLS optimization methodology guide. 2023. https:// www. xilinx. com/ suppo rt/ docum entat ion.
Accessed 30 Jan 2023.

 57. Vora K. LUMOS: dependency-driven disk-based graph processing. In: 2019 USENIX annual technical conference
(USENIX ATC 19). Renton: USENIX Association; 2019. p. 429–442.

 58. Voss N, et al. On predictable reconfigurable system design. ACM Trans Archit Code Optim. 2021;18(2):1–28.
 59. Walker DW, Dongarra JJ. MPI: a standard message passing interface. Supercomputer. 1996;12(1996):56–68.
 60. Wu YW, et al. FDGLib: a communication library for efficient large-scale graph processing in FPGA-accelerated data

centers. J Comput Sci Technol. 2021;36(2021):1051–70.
 61. Wu Z, et al. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst. 2021;32(1):4–24.
 62. Xie C, Yan L, Li WJ, Zhang Z. Distributed power-law graph computing: theoretical and empirical analysis. In: Xie C,

editor. Advances in neural information processing systems, vol. 27. Red Hook: Curran Associates Inc; 2014. p. 1–9.
 63. Xilinx Vitis library. PageRank 2023. https:// xilinx. github. io/ Vitis_ Libra ries/ graph/ 2021.1/ guide_ L2/ manual/ pageR ank.

html Accessed 30 Jan 2023.
 64. Yan M et al. Balancing memory accesses for energy-efficient graph analytics accelerators. In: 2019 IEEE/ACM Interna-

tional symposium on low power electronics and design (ISLPED). Lausanne: IEEE/ACM; 2019. p. 1–6.
 65. Yan M, et al. Characterizing and understanding GCNs on GPU. IEEE Comput Archit Lett. 2020;19(1):22–5.
 66. Yao P, Zheng L, Liao X, Jin H, He B. An efficient graph accelerator with parallel data conflict management. In:

Proceedings of the 27th international conference on parallel architectures and compilation techniques (Limassol,
Cyprus) (PACT ’18). Association for Computing Machinery: New York; 2018. p. 12.

 67. Yu J et al. DFOGraph: an I/O and communication-efficient system for distributed fully-out-of-core graph processing.
In: Proceedings of the 26th ACM SIGPLAN symposium on principles and practice of parallel programming (Virtual
event, Republic of Korea) (PPoPP ’21). New York: Association for Computing Machinery; 2021. p. 474–476.

 68. Zhou S, Chelmis C, Prasanna VK. Optimizing memory performance for FPGA implementation of pagerank. In: 2015
International conference on ReConFigurable computing and FPGAs (ReConFig). Riviera Maya: IEEE; 2015. p. 1–6.

 69. Zhou S, Chelmis C, Prasanna VK. High-throughput and energy-efficient graph processing on FPGA. In: 2016 24th
annual international symposium on field-programmable custom computing machines (FCCM). Washington: IEEE;
2016. p. 103–10.

 70. Zhou S, et al. HitGraph: high-throughput graph processing framework on FPGA. IEEE Trans Parallel Distrib Syst.
2019;30(10):2249–64.

 71. Zhou S, Kannan R, Zeng H, Prasanna VK. An FPGA framework for edge-centric graph processing. In: Proceedings
of the 15th ACM international conference on computing frontiers (Ischia, Italy) (CF ’18). New York: Association for
Computing Machinery; 2018. p. 69-77.

 72. Zhou S, Prasanna VK. Accelerating graph analytics on CPU-FPGA heterogeneous platform. In: 2017 29th interna-
tional symposium on computer architecture and high performance computing (SBAC-PAD). Campinas: IEEE; 2017.
p. 137–44.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/support/documentation
https://xilinx.github.io/Vitis_Libraries/graph/2021.1/guide_L2/manual/pageRank.html
https://xilinx.github.io/Vitis_Libraries/graph/2021.1/guide_L2/manual/pageRank.html

Page 28 of 28Sahebi et al. Journal of Big Data (2023) 10:95

 73. Zhu X, Han W, Chen W. GridGraph: large-scale graph processing on a single machine using 2-level hierarchical
partitioning. In: Proceedings of the 2015 USENIX conference on Usenix annual technical conference (Santa Clara,
CA) (USENIX ATC ’15). Berkeley: USENIX Association; 2015. p. 375–86.

 74. Zou Y, Lin M. GridGAS: an I/O-efficient heterogeneous FPGA+CPU computing platform for very large-scale graph
analytics. In: 2018 International conference on field-programmable technology (FPT). Naha: IEEE; 2018. p. 246–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Distributed large-scale graph processing on FPGAs
	Abstract
	Introduction
	Problem definition
	Existing solutions
	Single-FPGA based frameworks
	Multi-FPGA based frameworks

	Proposed solution
	Graph partitioning
	Single-FPGA graph processing
	Multi-FPGA graph processing

	Elaboration
	Methodology and baseline
	FPGA implementation
	Host program
	FPGA kernels
	Hadoop performance model

	Evaluation

	Conclusions
	Acknowledgements
	References

