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Abstract 

Processing large-scale graphs is challenging due to the nature of the computation that 
causes irregular memory access patterns. Managing such irregular accesses may cause 
significant performance degradation on both CPUs and GPUs. Thus, recent research 
trends propose graph processing acceleration with Field-Programmable Gate Arrays 
(FPGA). FPGAs are programmable hardware devices that can be fully customised to 
perform specific tasks in a highly parallel and efficient manner. However, FPGAs have a 
limited amount of on-chip memory that cannot fit the entire graph. Due to the limited 
device memory size, data needs to be repeatedly transferred to and from the FPGA on-
chip memory, which makes data transfer time dominate over the computation time. 
A possible way to overcome the FPGA accelerators’ resource limitation is to engage a 
multi-FPGA distributed architecture and use an efficient partitioning scheme. Such a 
scheme aims to increase data locality and minimise communication between differ-
ent partitions. This work proposes an FPGA processing engine that overlaps, hides and 
customises all data transfers so that the FPGA accelerator is fully utilised. This engine 
is integrated into a framework for using FPGA clusters and is able to use an offline 
partitioning method to facilitate the distribution of large-scale graphs. The proposed 
framework uses Hadoop at a higher level to map a graph to the underlying hardware 
platform. The higher layer of computation is responsible for gathering the blocks of 
data that have been pre-processed and stored on the host’s file system and distribute 
to a lower layer of computation made of FPGAs. We show how graph partitioning com-
bined with an FPGA architecture will lead to high performance, even when the graph 
has Millions of vertices and Billions of edges. In the case of the PageRank algorithm, 
widely used for ranking the importance of nodes in a graph, compared to state-of-the-
art CPU and GPU solutions, our implementation is the fastest, achieving a speedup of 
13 compared to 8 and 3 respectively. Moreover, in the case of the large-scale graphs, 
the GPU solution fails due to memory limitations while the CPU solution achieves a 
speedup of 12 compared to the 26x achieved by our FPGA solution. Other state-of-the-
art FPGA solutions are 28 times slower than our proposed solution. When the size of a 
graph limits the performance of a single FPGA device, our performance model shows 
that using multi-FPGAs in a distributed system can further improve the performance by 
about 12x. This highlights our implementation efficiency for large datasets not fitting in 
the on-chip memory of a hardware device.
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Introduction
Graphs are growing in popularity because they are a powerful tool for uncovering 
patterns, connections, and insights within data, which can be used to support a wide 
variety of applications, including fraud detection, social network, bio-informatics, and 
computer vision. Graphs are best at representing data with complex relationships and 
inter-dependencies often generated from non-Euclidean domains. Since these data are 
becoming more popular, graphs are growing in adoption, and recently, many studies on 
extending deep learning approaches for graphs have emerged. Especially graph neural 
networks (GNNs) [61]. Moreover, graph-based models are used heavily in the biological 
domain to predict the properties of new compounds, estimate their activity levels, pre-
dict their side effects [13], and generate candidate molecular structures [54]. However, 
due to their irregular nature, graphs are inherently hard to compute, becoming a chal-
lenging task [10, 23, 45, 46, 51, 66].

Graph computing is due to their irregular structure, which leads to a high amount 
of stochastic and irregular access to the memory [33]. This factor contributes to a lack 
of data locality, which leads to the inability to achieve high parallelism; multiple work-
ers would only increase overhead instead of performance due to the contention on the 
memory controller. Recent advances in computer architectures offer different solutions 
for CPUs, GPUs, FPGAs, and other accelerators to overcome such computational chal-
lenges [20, 62, 64, 67, 72]. However, all these architectures present different trade-offs: 
GPUs, for example, are optimised for massively parallel workloads (e.g., Deep Neural 
Networks), while they are less efficient in applications containing extremely memory-
sparse operations and data races issues [42, 65, 70]. Recently, reconfigurable architec-
tures (e.g., Field Programmable Gate Array) are emerging as an attractive alternative to 
CPUs and GPUs for graph processing. Unlike traditional CPUs, which are designed to 
perform a wide range of tasks, FPGAs are highly customisable and can be tailored to 
perform specific functions. They can benefit from the dataflow execution model as it 
allows for highly parallel and efficient execution of tasks. In a dataflow execution model, 
tasks are broken down into small, independent units of work called “tasks” or “jobs”, 
which can be executed in parallel [27–30, 35]. This can be especially beneficial for graph 
processing tasks, as it allows for parallel execution of operations such as filtering, sort-
ing, and memory access, allowing them to process large-scale graphs much more effi-
ciently than CPUs or GPUs.

Additionally, FPGAs are highly efficient in handling memory-bound tasks, which is a 
common characteristic of graph processing algorithms [8, 16, 51, 70]. The increase in 
popularity of modern reconfigurable architectures made researchers focus more on mit-
igating the following problems:

• Graph size: in contrast to CPUs and GPUs, which use a cache hierarchy memory 
model, FPGAs can exploit various types of memory, including Lookup Tables 
(LUTs), Block RAM (BRAM), Ultra-RAM (URAM) and High-Bandwidth Memory 
(HBM). Unlike DRAM, these memory types can provide more performance thanks 
to their lower latency and higher bandwidth. Moreover, they can be fully customised 
and configured to suit the specific needs of the computation. For example, one of the 
most valuable features of BRAMs is their ability to provide high-throughput random 
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access to memory [9, 26, 68]. The dual-port nature of the BRAM memories allows 
parallel, same-clock-cycle access to different locations [55]. However, this feature can 
also be a weakness of the system, as accessing the memory through the ports can 
cause a performance bottleneck. This is because the ports on BRAM are the only 
way to access the data stored within the memory. They are typically implemented 
using a finite number of physical connections. When multiple inputs or outputs are 
trying to access the memory simultaneously, they may have to wait for the ports to 
become available, which can delay and slow down the overall system performance. 
Another limitation of using FPGAs for large-graph processing is that the size of on-
chip memory in a single FPGA is often not sufficient to store the entire size of the 
graph.

• Data locality: most of the graph structure is irregular, meaning that the degree of 
connectivity and the connection themselves may be highly different between nodes. 
This may considerably impact the performance as consequently accessed nodes 
might be stored far away in memory, hence causing cache misses that greatly degrade 
performance. As a result, in the vast majority of cases, data locality is a significant 
problem. Moreover, graphs are usually created based on a natural phenomenon, 
from Social Networks to Biological structures. Subsequently, the distribution of data 
in these graphs, instead of being uniform, follows the Power Law distribution, com-
plicating the locality of data during the computation [18, 40];

• Irregular data access patterns: in unstructured graphs, the data access pattern is not 
predictable, meaning that each access to memory is done to a different position. This 
type of access is called irregular memory access. This makes it difficult to optimise 
memory access, as the location of data in memory is not known in advance, resulting 
in longer access times and leading to a decrease in performance [19, 69, 71]. Over-
all, in most graph processing applications, accessing irregular data is more time-con-
suming than the computation itself;

• Data conflicts: in graph applications, data conflicts are very common (e.g., reading/
writing of the same vertex simultaneously). As a result, memory model policies, 
such as memory locks or atomic operations, are necessary to guarantee correctness, 
affecting the overall performance [66, 70] as they introduce overhead and limit paral-
lelism.

The advent of big data resulted in an increase in model and dataset size and even graphs. 
Thus, such graphs, often called large-scale graphs, are not manageable by a single node 
anymore [44]. Hence, the advent of distributed large-scale graph computing. Many 
distributed frameworks can be used to analyse large-scale graphs, for example, Map-
Reduce [5], Stratosphere [1], Hama [52], Giraph [50], Graphlab [41]. Although these 
frameworks are not capable of natively targeting accelerators, they offer good perfor-
mance when used to analyse large-scale graphs [22].

This study targets the challenges of large-scale graph processing and proposes a new 
framework. This framework adapts the state-of-the-art partitioning scheme proposed 
in GridGraph [32] for FPGA use. The GridGraph library partitions the edges of a 
graph into smaller chunks, each managed by a specific vertex of the graph. The frame-
work also provides a reconfigurable architecture targeting FPGAs. This architecture 
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outperforms CPUs by over 26x and enterprise GPUs by over 4x. Moreover, the pro-
posed partitioning scheme can be applied recursively, graphs can be partitioned into 
subgraphs, and these subgraphs can be partitioned again. This allows applying 
the proposed framework to distributed computing. A graph can be portioned and 
assigned to nodes first, and then these partitions are further split for parallel process-
ing on FPGA accelerators, if available on the node. This study analyses the integration 
between the proposed framework and Hadoop for distributed computing and pro-
posed forecasts based on the measured performance combined with the well-known 
scalability characteristics of Hadoop [21, 34].

The main contributions of this paper are as follows:

• Introducing a framework of reconfigurable architecture suitable to process very 
large-scale graphs. This framework gets the benefit of an offline partitioning 
scheme to manage the underlying FPGA devices. This work shows the potential of 
using this approach as an efficient core of a distributed platform;

• Analysing the large-scale graph computing challenges on FPGAs by presenting a 
baseline study and distribution methodology toward processing large-scale graphs 
on Data Centre acceleration platforms;

• A novel model based on Hadoop to distribute the graph processing workload on 
the available workers. This model provides a flexibility to execute a very large scale 
graph dataset on the available resource either CPU or FPGA which is efficient and 
cost-effective.

• Proposing an optimised implementation of the PageRank for a single FPGA, which 
outperforms state-of-the-art open source solutions on CPU, GPU and FPGA 
offering a speedup up to 2×, 4.4× and 26× higher.

The rest of this paper is structured as follows: in "Problem definition" section, we 
describe the background and the motivation of this study. In "Existing solutions" sec-
tions, we discuss related studies and their features compared to our study, and we 
introduce a taxonomy of the recent works on FPGAs and their characteristics. Then 
in "Proposed solution" section, we introduce the proposed solution in "Elaboration" 
section, and we further discuss the baseline study, the methodology of design imple-
mentation and its evaluation. Finally, in "Conclusions" section, we conclude and 
briefly introduce future works.

Problem definition
Recent studies on graph processing on FPGA [16, 19, 51] evaluate their work with 
medium-sized graph datasets instead of using large-scale ones. Hence, these graphs 
can be computed by a desktop CPU, as shown by Sakr et al. [49]. This may discourage 
the usage of hardware accelerators, like FPGAs or GPUs since they are generally more 
costly and less programming friendly than a general-purpose CPU. However, the rise 
of big data technologies made it easier to collect, store, and process large volumes of 
data. This led to more data being available to be represented as a graph, resulting in 
larger graph sizes. In fact, graph size is rapidly growing, reaching the order of Peta 
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Bytes [49], exceeding the main memory storage capacity available on modern CPUs 
or GPUs. Thus, the motivation of our work is large-scale graphs evaluation, also con-
sidered in recent works on FPGAs [6, 19, 51].

The second motivation is integrating a high-level interface to deploy a distributed plat-
form on top of the underlying hardware. Hadoop is a valuable solution for large-scale 
graph processing because it provides a powerful set of tools for storing, processing, and 
analysing large graph datasets in a distributed manner. The Hadoop Distributed File Sys-
tem (HDFS) allows for the storage of large data sets across a cluster of machines, making 
it possible to process graphs that are much larger than what a single machine can handle. 
The scalability of Hadoop allows the cluster to be easily adapted by adding or remov-
ing machines, allowing the processing of large graphs cost-effectively. The map-reduce 
programming model employed by Hadoop facilitates distributed computing, which can 
greatly improve the performance of graph processing algorithms.

Existing solutions
This section analyses alternatives and state-of-the-art approaches to large-scale graph 
processing.

Single‑FPGA based frameworks

Zhou et al. [69] proposed a system that employs the edge-centric processing model and 
the GAS (Global Address Space) paradigm to handle medium-sized graphs in a system-
atic framework. They address the FPGA chip’s memory space limitation by using part 
of the onboard DRAM for updates. This buffer temporarily stores intermediate pro-
cessing results, but it creates a significant I/O overhead that lowers graph processing 
performance.

To enhance pipeline efficiency and graph processing speed, FabGraph is using a 2-level 
caching mechanism for vertices that periodically stores vertex blocks. However, when 
extremely sparse real-world graphs are used, streaming processing creates large commu-
nication overhead between the two cache levels [51].

FPGP [18] prepares a large input graph using grid blocks and stores the graph’s vertex 
and data in onboard and host DRAM. During computation, the edges are sent to the 
FPGA through the host bus and processed.

GridGAS [74] utilises the GridGraph [73] graph partitioning and proposes a method 
for processing massive graphs using a heterogeneous FPGA accelerator. The graph data 
is immediately sent to the FPGA chip processing unit. However, the system performance 
is affected by the PCIe limitation due to the data transfers between the host and the 
FPGA device. Low bandwidth results in poor processing performance and low utilisa-
tion rates of the FPGA chip’s resources.

GraphOps [46] presents a modular Dataflow library approach to build a graph pro-
cessing accelerator on FPGA written in MAXJ using the Maxeler toolchain. There are 
some limitations with GraphOps: a lack of portability and memory consistency, also it 
only supports one FPGA.

GraphGen [45] transforms the input graph into an instruction stream, which is then 
processed by pipelines implemented using FPGA’s logic resources. The work utilises the 
DRAM memory interface known as CoRAM, which enables the FPGA to access the 
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host’s main memory. The accelerator is a single processing device that leverages parallel-
ism from the application via pipelining and SIMD processing.

Asiatici and Ienne [6] have introduced large-scale graph processing on a single FPGA 
by implementing the work proposed in Chisel using the Vivado design suite for the syn-
thesis process [7]. The evaluation was conducted on Amazon AWS F1 instances, which 
include a Virtex UltraScale+ FPGA connected to the host system through PCI Express 
and four 16 GB DDR4 channels. The contribution of the work is to eliminate cache 
misses and exploit the multi-die feature of a single FPGA.

ThunderGP [16] offers an automated user interface for graph processing, enabling 
users to automate the execution of desired applications. To ensure efficient use of the 
platform’s memory bandwidth, ThunderGP employs methods to process the appropriate 
number of kernels while fitting them within the constraints of the device. ThunderGP 
groups Scatter Processing Elements (PEs), these PEs together in a kernel group known as 
a “scatter–gather” kernel group, as they operate in the same pipeline. Apply PEs, on the 
other hand, are placed in a separate kernel group referred to as an apply-kernel group.

Multi‑FPGA based frameworks

GravF-M [24] provides a redesigned architecture from their previous work [23], that 
expand the architecture over the distributed platform and aims to minimise commu-
nication across the inter-FPGA network. Although network bandwidth is the limiting 
factor for distributed computing performance on most systems, a proper design can 
increase overall system compatibility and performance. In GravF-M, authors design a 
scatter-apply-gather paradigm among multiple PEs, communicating with other process-
ing elements on another FPGA board through the network interconnect. A Processing 
Element (PE) here is a minimal hardware function that expresses the proposed method. 
GravF-M also incorporates a low-overhead partitioning technique that improves load 
balancing among PEs and FPGAs. The FPGA kernel is performed for each active vertex 
in the graph called superstep. A vertex kernel only has access to constrained data locally 
to the vertex during a superstep. Messages are used to share data with neighbouring ver-
tices. Gather, Apply, and Scatter are three further functions included in this implemen-
tation. On the contrary, while we use GridGraph, we do not need to implement these 
stages since GridGraph has already combined the three phases into one stream-apply 
phase in that every edge is streamed, and the produced update is promptly applied to 
the source or destination vertex. Only one traverse across the edge blocks is required by 
aggregating the updates. This significantly simplifies the design and exploits better paral-
lelism since the processing element can be duplicated in the FPGA resources with much 
more numbers than presented in GravF-M. The programming model used in GravF-M is 
Migen, a Python-based tool to export Verilog codes to be synthesised with conventional 
tools such as Vivado. The important limitation of GravF-M is the limited dataset size, 
which needs to fit the entire graph in the resources provided by the FPGA. Moreover, 
the evaluation has been done on just Synthetic graphs like RMAT [14] to make sure the 
load is balanced through the distribution in the network and the size of the evaluated 
dataset is small. Another limitation of GravF-M is the compatibility of the work to be 
extended to large-scale graphs; first, the whole graph must fit onto the FPGA; second, 
there is no supervision from the host, and orchestration of the work must be considered 
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and hard coded from the initial implementation. Whereas, in our proposal, the host 
orchestrates the graph’s workload and distributes it among the available FPGAs, which 
allows for dynamic load balancing and scheduling.

In ForeGraph [19] authors propose a graph processing framework that utilises the 
onboard DRAM grid representation of graphs and distributes FPGA logic resources 
within several pipelines. Each pipeline consists of two vertex buffers that preserve vertex 
blocks. Through these pipelines, the blocks dedicated to each vertex are first loaded into 
the vertex buffers connected to the buffers, and then the edge blocks are processed in 
parallel by the FPGA chip. In this technique, the pipelines interface explicitly with the 
DRAM to swap vertex data, resulting in small pipeline delays and improved graph pro-
cessing performance.

Although ForeGraph provided a state-of-the-art competitive evaluation against other 
recent studies, the work is based on simulation, and output results have not been experi-
mentally validated on a real hardware platform. The critical point is that the presented 
approach in this work is likely to face hardware limitations such as the clock and timing 
constraints of actual hardware. Additionally, the overhead of the network is neglected 
since the overhead of such network interconnects is not considered in the evaluated 
results on a simulated platform, which can make a significant difference.

There are few and limited works that elaborate on Hadoop on multi-FPGA platforms 
[2, 17, 43]. Neshatpour et  al. [43] propose a Hadoop machine-learning system using 
multi-heterogeneous platforms. This work proposes a system including a master desktop 
responsible for hosting the Hadoop, and it is connected via a switch to a number of het-
erogeneous FPGA boards. The authors focus more on profiling the characteristics of the 
design, such as I/O overhead and kernel movements, to show the potential of the design 
and speed up by using the Hadoop framework. However, it is not clear and discussed 
in detail the structure of the design in FPGA and its interface between the heterogene-
ous platform itself (data movement between PS and PL part in the heterogeneous FPGA 
board) and the host system.

In [2, 17], the authors proposed a Hadoop cluster framework using FPGA boards to 
accelerate machine learning applications. In these studies, the goal of the work is to dis-
tribute deep computation load into a Hadoop cluster or cloud of computing nodes and 
use FPGAs to accelerate the intensive computational kernels. The crucial point of these 
works are; first, there is not a clear design specification to study how the FPGA kernel 
units interface with the higher-level hosts; second, the observed speed up is not well 
studied against state-of-the-art and against other studies on CPU or GPU.

FDGLib [60] is a lightweight communication library that facilitates the scaling out of 
single FPGA-based graph accelerators to a distributed version in a distributed platform 
with minimal hardware engineering efforts. To make any graph suitable for this method, 
the library provides APIs based on Message Passing Interface (MPI) that can be inte-
grated into FPGA-based graph accelerators with minimal modifications to their existing 
code. One of the critical aspects of FDGLib is the substantial preprocessing time over-
head. According to the research paper, the preprocessing time for the smallest evaluated 
dataset can take up to 50 s, while in our framework, the preprocessing time is in order 
of a few milliseconds to a few seconds, which has a very low impact on the evaluation 
of the work described in "Evaluation" section. Furthermore, it should be noted that the 
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dataset used in the study is relatively small, and as such, the preprocessing time may 
have a more significant impact on larger datasets.

Table 1 shows a taxonomy of the selected best existing solutions that are closest to our 
work.

Proposed solution
When implementing a large-size graph processor on FPGAs, there are several design 
choices to consider. Firstly, due to the limited on-chip memory available on modern 
FPGAs, it is necessary to partition the graph into small chunks that can fit into it. This 
partitioning method must also produce equally sized chunks, as FPGAs do not support 
dynamic memory allocations. Moreover, the partitioning scheme should minimise exter-
nal memory accesses as data transfers introduce a huge amount of overhead and kill the 
performance. Secondly, there is a need to design a processing kernel that has a memory 
access pattern compatible with the partitioning scheme mentioned above. This allows 
for a reduction of the communication overhead as communications are costly, especially 
in case host computer memory needs to be read from the accelerator or different accel-
erators. The processing kernel should use the least amount of resources. On FPGAs, par-
allelism is achieved in space by assigning different computational resources to a different 

Table 1 Brief overview of the closest recent studies on FPGA accelerators and their features 
compared to this work

a  Weather the algorithm supports distributed computing
b  The programming language used
c  Weather the implementation is based on software simulation or actual hardware
d  Weather the hardware access to the Host Memory directly
e  The scale of the evaluation graph presented dataset. Here, we consider a graph with 10 GB data size as a Medium size 
graph
f  Weather the work is open-source and available to the public
g  The target platform of FPGAs discussed in the paper
h  The year the work was published
i  Migen, a Python-based tool to export Verilog codes to be synthesised with conventional tools such as Vivado
j  The source code is available at: https:// github. com/ AminS ahebi/ distr ibuted- graph- fpga. git

Work Distributed?a Languageb Implementationc Access 
to host 
 memoryd

Evaluation 
 sizee

Public 
repository?f

FPGA 
 platformg

Published 
 yearh

ForeGraph [19] � HDL Simulation × Medium × Xilinx VCU110 2017

FabGraph [51] × HLS Simulation × Medium × Xilinx VCU110 
and VCU118

2019

HitGraph [70] × HDL Hardware × Small � Xilinx Virtex 
Ultrascale+

2019

ThunderGP [16] × HLS/C++ Hardware × Medium � Alveo Family 2021

GraVF-M [24] � Pythonii Hardware � Medium � Micron Pico 
se-6 platform

2019

GridGAS [74] � HDL Hardware � Medium × Xilinx Kintex 2018

FPGP [18] × HDL Hardware × Medium × Xilinx Virtex-7 2016

FDGLib [60] � HDL/C++ Hardware × Small × Alveo Family 2021

Asitatici and 
Ienne [6]

× Chisel Hardware × Large � Xilinx Virtex 
Ultrascale+ 
(AWS Platform)

2021

GraphOps [46] × MAXJ Hardware × Small × MAXELER 
Boards

2016

This Work � HLS/C++ Hardware � Very Large �j Alveo Family 2022

https://github.com/AminSahebi/distributed-graph-fpga.git
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portion of the workload. Computational units can be instantiated multiple times until 
there are no resources available. Kernels that use fewer resources can be instantiated 
more often, increasing parallelism and performance. The partitioning scheme being dis-
cussed in this study is designed to split the workload among different nodes. The scheme 
is similar to the partitioning scheme required for FPGAs. It is applied recursively, once 
to partition the graph among different nodes and again to map the subgraphs to on-chip 
accelerator memory. This approach allows for efficient and effective use of resources in 
distributed and parallel computing environments.

The following section describes the approaches used for the partitioning method, the 
single-FPGA and multi-FPGA implementation.

Graph partitioning

A common challenge discussed in the graph computing literature is graph partitioning. 
Many works proposed novel techniques and algorithms for graph partitioning [31, 37, 
73]. Table 2 shows the best graph partitioning presented in recent studies.

The proposed work involves the GridGraph partition method for dividing the edges 
of a graph into smaller groups, called chunks and assigning each group to a specific ver-
tex. The chunks and their corresponding vertex information are then stored on the host 
file system. The chunks should be independent of one another, and their size should be 
compatible with the size of BRAM on the target FPGA. The Kernel will read the chunks 
sequentially from the host memory, and updated values will be written back to the host 
memory.

Among the various partitioning techniques present in the literature (see Table  2), 
GridGraph offers the best tradeoffs for FPGA acceleration. Hence, the GridGraph par-
titioning method is selected due to its ability to offer high data locality and avoid data 
conflicts. This is achieved by dividing the graph into smaller subgraphs called grids, pro-
cessing each grid independently, making it more efficient when large graph processing is 
considered [73].

Grids can be mapped on the on-chip resources on the FPGA, improving the perfor-
mance scalability.

An example of graph partitioning with GridGraph is illustrated in Fig. 1, whose vertex 
set is divided into two partitions (P), resulting in four equal-length 2x2 grid subsets. It 
can be seen that a given directed graph G = (V, E), where V indicates the set of vertices 
and E the set of edges1, will be divided into P2 blocks based on the source and destina-
tion vertices. Each edge is placed into a block using the following rule: “the source ver-
tex determines the row of the block, and the destination vertex determines the column of 
the block.” Each partition represents outgoing edges for a range of vertices; partition  P1 
holds outgoing edges for vertex 1,  P2 holds for vertex 2,  P3 holds for vertex 3, and  P4 for 
vertices 4 and 5.

The graph is processed by the iterative process in a predetermined sequence. Spe-
cifically, it loads edges from partition  P1 and processes them in memory, followed by 
loading edges from partition  P2 and so on until the last partition  P4 is processed. After 

1 We use the term “edge” to refer to arcs directed in either direction, although in graph theory the rigorous term for a 
directed edge is “arc”.
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all the partitions have been processed, the process computes vertex values that may 
be stored on disk to end the iteration. This process is repeated for multiple iterations 
until a termination condition specific to the algorithm is met. Further details about 
the implementation will be presented in the subsequent sections.

Fig. 1 a A given sample graph. b Edge blocks results of preprocessing concept [48]. The ❶, ❷, ❸ and ❹ 
are referred to as the produced edge blocks using GridGraph partitioning [73]. Here, the number of partitions 
is P = 2, producing P2 edge blocks

Table 2 Most recent and well-known graph partitioning techniques suitable for FPGA 
implementation

Graph 
partitioning 
algorithm

Methodology Programming 
Language

Graph 
partitioning

Source code Platform Year

GridGraph [73] Grid partition of 
edges

C++ Store edge 
partition blocks 
on disk

Public CPU 2015

Lumos [57] Grid partition 
of edges plus 
cross-iteration 
propagation 
values support 
bulk synchronous 
processing

C++ Store edge parti-
tions as blocks 
on disk

Public CPU 2020

FabGraph [51] Grid partition of 
edges plus hash 
partitioning to 
support power 
law graphs

C++ Store partition 
blocks on disk

not public Multi-FPGA 2019

PowerGraph [31] Vertex-cut parti-
tioning

C++, Java, Scala Partitioning dur-
ing Runtime

Public CPU 2013

Graphchi [37] Shard-interval 
partitioning plus 
sorting, asynchro-
nous processing

HLS Partitioning dur-
ing Runtime

Public Multi-FPGA 2021

ThunderGP [16] Vertex-cut parti-
tioning

HLS-C/C++ Partitioning dur-
ing Runtime

Public single-FPGA 2021

Foregraph [19] Shard-interval HDL Partitioning dur-
ing Runtime

not Public Multi-FPGA 2017
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Single‑FPGA graph processing

In a single FPGA workflow, a graph dataset is pre-processed using the partitioning 
method described in the  "Graph partitioning" section, and the resulting edge blocks are 
stored on the host file system. The overall size of graph blocks may exceed terabytes, and 
the host memory must be enough to read all these edge blocks from the file system. The 
data is loaded into the FPGA’s on-chip memory before it can be processed. Dedicated 
FPGA kernels read the data from the stream input provided by the host and direct it 
to the FPGA computational units. Once the computation is complete, the aggregated 
results are written back to the host memory and stored in its file system.

Figure 2 shows an overview of the single FPGA graph processing unit. In this figure, 
on-chip memory is configured to achieve the highest memory bandwidth while keeping 
the frequency of the system at its highest.

Multi‑FPGA graph processing

Large graph datasets can easily exceed the computing capabilities of a single machine 
(e.g., memory). In distributed computing, data is split among multiple machines, ena-
bling the processing of graphs that are beyond the capabilities of a single machine. 
Distributed systems can provide several benefits, including scalability, fault tolerance, 
and performance. A distributed system consists of a set of machines working together 
as a single virtual system, with each machine or node responsible for processing a 
portion of the data. These systems can be manually managed with a custom software 
implementation, for example by leveraging the widely used message passing interface 
(MPI) [59]. Also managing these systems manually allows for fine-tuning the applica-
tion and enables achieving high performance. This requires significant engineering 
effort and expert developers in the context of distributed computing.

Fig. 2 The design system overview of the single-FPGA processing unit
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Moreover, custom solutions offer no guarantee in terms of scalability and 
performance.

There are a wide variety of frameworks for distributed computing that automate 
and overcome most of the challenges mentioned above. Hadoop is a popular open-
source framework that is used for large datasets on clusters of machines. It was cre-
ated by the Apache Software Foundation in 2005, and has since become one of the 
well-known used technologies for large data processing [5]. Hadoop is based on the 
map-reduce programming model, which allows for the parallel processing of big data 
across a distributed platform thanks to the adoption of the Hadoop Distributed File 
System (HDFS).

The data is usually stored in a distributed file system, such as Hadoop Distributed 
File System (HDFS) or ZFS [47] and processed using a distributed computing frame-
work (e.g., Apache Hadoop). Graph algorithms, such as PageRank, can be imple-
mented on top of these frameworks to process and analyse the graph [22]. The use of 
FPGAs in combination with Hadoop for large graph processing is an emerging field 
that has gained attention in recent years [11, 53]. By combining Hadoop with FPGAs, 
it is possible to take advantage of the scalability and fault-tolerance of Hadoop, while 
also leveraging the high performance of FPGAs for graph processing tasks. Adoption 
of FPGA with Hadoop is still in the early stages, and more research is needed to ana-
lyse the feasibility of using FPGA combined with Hadoop to accelerate graph process-
ing and optimise the performance of these systems.

Data processing can be divided into two main phases: 

1. The first phase is known as the “Map” phase. The data is divided into smaller chunks, 
called input splits, and each split is processed by a separate node in the cluster. The 
processing that occurs in the Map phase is typically performed by user-defined func-
tions called Mappers, which take the input data and transform it into a set of inter-
mediate key-value pairs;

2. The second phase is known as the “Reduce” phase. The intermediate key-value pairs 
from the Map phase are processed by user-defined functions called “Reducers”, 
which take the input data and merge it into the final output.

In a map-reduce architecture, a user application launches a root controller and a set 
of mappers and reducers, which are distributed across several compute nodes. The 
root node coordinates the generation of mappers and reducers and keeps track of 
their progress. The overall system overview of the Hadoop map-reduce design is illus-
trated in Fig. 3.

In our case, nodes containing more than one FPGA accelerator are configured in 
a way that Hadoop sees them as multiple nodes with a single FPGA. For example, 
on a node containing four FPGAs, four different instances of Hadoop are executed, 
and the FPGAs are mapped one-to-one to the instances.  This design choice greatly 
simplifies the design as it removes the need to split the workload between multiple 
FPGAs manually. Additionally, it enables the use of Hadoop scheduling for load bal-
ancing and fault tolerance. The Hadoop scheduler can then handle single FPGA fail-
ures without switching offline the entire node.
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The proposed large graph processing framework involves three phases: 

1. Split the graph into sub-blocks by using the proposed variant of the GridGraph parti-
tioning method (e.g., edge blocks);

2. Execute parallel portion of the graph processing algorithm implementing a custom 
Map function (see Fig. 4);

3. Merge the partial results computed on different workers using a custom Reduce 
function (see Fig. 5).

Phase 1 can be considered pre-processing, where the graph is partitioned into sub-
graphs, and the various node will process them. This process can be executed in parallel 
and consists of a single scan of the graph.

Phase 2 is part of the actual processing. This step consists of executing the graph 
processing algorithm on the subgraphs computed in the previous step. This step is 

Fig. 3 The Hadoop framework for distributed graph processing [48]

Fig. 4 Map-phase, distribute sub-blocks all over the targets
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implemented using a custom Map function. In the proposed architecture, this step com-
putes the PageRank of the subgraph by evaluating the rank equation.

Phase 3 is the final step of the processing. It consists of merging the partial rank vec-
tors into one. In the proposed architecture, this step is optional. Since Mappers save the 
results on different files, this step can be used to merge those files into one. However, 
depending on the use case, merging the results into one monolithic file might not be 
needed.

Phase 1 is repeated two times, the first time to split the graph into subgraphs that are 
mapped to nodes and the second time to further split the subgraph into chunks that can 
be processed in parallel by the FPGAs. More details about this can be found in  "Single-
FPGA graph processing" section. In the case of iterative algorithms, such as PageRank, 
phases 2 and 3 need to be executed multiple times until the results converge.

Elaboration
To evaluate the proposed framework, the following steps are taken.

Initially, we defined a theoretical performance model to understand whether or not 
some advantage could have been achieved by deploying FPGAs for accelerating part of 
the computation. The model is first evaluated by using maximum values for the basic 
parameters (e.g., maximum bandwidth for memory, see Table  3). The performance 
model evaluation is conducted by using selected datasets, which are large enough in 
terms of vertices and edges to identify any potential limitations or issues (see Table 5). 
Since FPGA programming requires significant engineering effort, modelling the perfor-
mance using conservative worst-case scenario parameters is necessary to determine the 
trade-off between development time and achievable performance [58]. Then, in "FPGA 
implementation" section, the methodology adopted to implement optimised graph 
algorithms (e.g., PageRank) on cloud-based FPGA devices (e.g., Xilinx Alveo Boards) is 
described. Lastly, the performance of the optimised implementation is compared with 

Fig. 5 Reduce-phase, gather partial workers’ results to compute the final output
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CPU, GPU, and FPGA solutions, and distributed system forecasts are provided (see  
"Evaluation" section).

Methodology and baseline

FPGAs are inherently hard to program. Present-day HLS toolchains simplify this pro-
cess. However, deploying an application on FPGA still requires significant engineering 
effort. Engineers developed a method to quickly predict the performance of FPGAs and 
determine if they can meet the necessary requirements, reducing wasted time and effort 
[58]. In this study, we employ this methodology to guide the FPGA development pro-
cess. The exact details of this methodology are not part of this study, but the main steps 
are briefly summarised. The first step involves analysing the algorithm and drafting a 
possible FPGA architecture. This architecture is then analysed, accounting for input size, 
data transfers, the bandwidth of the interconnects and accelerator characteristics. FPGA 
performance is predictable and can be estimated “a priori” by analysing the workload 
and using a set of linear equations [58]. This performance forecast is then evaluated, and 
in case the performance requirements are not met, the previous steps are repeated mul-
tiple times with new and improved FPGA architecture candidates. Once an FPGA archi-
tecture candidate is found, there is a need to produce a software model that simulates 
the FPGA architecture exactly. Using metrics from the software model, the performance 
forecasts are refined, and if needed, the architecture is changed accordingly. For the sake 
of clarity, the various intermediate architectures that are developed and refined at each 

Table 3 Baseline assumption and notations used in the baseline study

Symbol Meaning Con‑stant 
value(if any)

|V | Number of vertices

|E| Number of edges

Sv Size of a vertex (Byte) 4

Se Size of an edge (Byte) 8

datawidth Depending on the scenario (1024, 2048, 4096) 2048

P2 The graph will be portioned into P × P edge-blocks

Sblock Size of an edge-block (MB) 10

fFPGA Clock Frequency MHz 200

Tcomp Time to process (read/Write to/from-chip BRAM)

Tcomm Time to move data from host memory to FPGA

Tinit Time to load the libraries (reduced after the first run)

TPCIe Time to interconnect between boards

Tmem Time to transfer data (loading blocks) between off-chip memory and PEs

Tbaseline Time for CPU-only

TFPGA Execution time in FPGA only

Sbram BRAM storage size [it should be higher or equal to the size of each edge block 
Sbram ≥ Sblock(i,j)] (MB)

54

BWmem DDR4-2400 (GB/s) 19.2

BWPCIe PCIe 3.0 bandwidth ×16 (GB/s) 32

effPCIe PCIe efficiency 0.8

effmem Memory efficiency 0.8

SL Number of SLRs in the FPGA die 4
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iteration are omitted. Only the final version is described. The assumption and notations 
used in the baseline model are presented in Table 3. The model is general and can be 
applied to any FPGA by inputting the correct parameters. However, the results show the 
baseline only for our selected FPGA accelerator, as it is the FPGA device available for 
this study (see "FPGA implementation" section). The most important formulas used in 
this forecast are summarised in Table 4. Some formulas related to the data partitioning 
are extracted from the work presented in [73].

Tables  6, 7, and 8 show the performance based on the system characteristics and 
assume the use of Xilinx Alveo U250 in our performance model. As can be seen, the 
anticipated speedup is calculated based on the computation time, communication time, 
and other overheads and bottlenecks such as PCIe Rate. The efficiency of the PCIe bus is 
set to 0.85 of its ideal performance. This is a worst-case scenario, where the application, 
encoding and packaging of data reduce the bandwidth by 15%.

Table  6 shows the loading time from the host memory to the FPGA device’s global 
memory. Here,  Tmem is evaluated on the graph data and the maximum performance of 
the DDR4-2400, which is installed on the host system.

Table 7 shows the computation and communication time that needs to be done from 
the host to the FPGA device. These results are derived from the previous Table 6. Note 
that data is assumed to be already loaded in the memory of the host system; the time to 
read data from the host file system is omitted.

Finally, Table 8 shows the overall speedup against the same algorithm on the CPU. The 
values presented in this table are derived from the two previous Tables 6 and 7 discussed 
in this section. The number of partitions is assumed to be constant in all graph datasets, 
and the number of Super Logic Regions (SLRs) for this evaluation is assumed to be one. 
SLRs are specific areas of the FPGA fabric that can be used to implement logic functions 
or memory elements. By allocating each kernel to a specific SLR and dedicating the nec-
essary memory channel, the design can be optimised and the scalability improved. The 
baseline shows transferring edge blocks with bigger sizes is better compared to the CPU 
baseline, and this is the potential of the design, which is suitable for very big graph data-
sets. Based on this performance evaluation, we achieved close to ∼ 13 times (Friendster 
dataset) more than the baseline implementation on the CPU.

Table 4 Formulas used in the baseline study

Formula Description

P =

∣

∣

∣

√

Se×|E|
Sblock

∣

∣

∣

Total number of partitions based on GridGraph preprocessing

Sizedata = Sblock × P2 Edge block size to be processed

BWBRAM =
datawidth×fFPGA

Se
BRAM Bandwidth calculation

Tmem =
|V |·Sv+|E|·Se
BWmem×effmem

Load time for Vertex and Edges data from/to Global Memory 
to/from  PEFPGA

TPCIe =
sizedata

BWPCIe×effPCIe
PCIe transfer time

Tcomm = Tinit + TPCIe + Tmem Transfer time from/to CPU host to/from  PEFPGA

TFPGA = Tcomm + Tcomp Total time for FPGA

Tcomp =
|V |+|E|
BWBRAM

Computation time in the FPGA

S =
Sbaseline
SFPGA

Speedup over the baseline execution time
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In other words, our model shows that FPGAs have the potential to be one order of 
magnitude faster than CPUs for graph processing. Hence, the proposed architecture is 
developed and implemented onto FPGA. The following "FPGA implementation" section 
shows technical details of the implementation.

FPGA implementation

The baseline study presented in the previous section demonstrated the advantages of 
using FPGAs for graph processing. In this section, the goal is to present the implemen-
tation details and optimisations used to develop the final graph processing framework. 
Vivado HLS toolchain (version 2022.2) is used for the algorithm implementation on the 
available Xilinx Alveo U250 board, which contains a Xilinx VU13P FPGA.

Xilinx Alveo boards are Data Center accelerator cards that are specifically designed to 
meet the evolving needs of modern Data Centers, including machine learning inference, 
video transcoding, and database search and analytics [56]. Figure 6 illustrates the Xilinx 
Alveo U250 block diagram and its interface with the host system. The Vivado design 
suite (Vitis version 2022.2) is used to develop and implement the target architecture. The 
implementation is divided into two parts: Kernel implementation and Host program. The 
host code is responsible for the software-based part of the design, which will be exe-
cuted on the CPU. This part resides on the host system and will schedule the loading of 
the edge blocks, transfer them to the associated kernels, and, finally, drive kernel execu-
tion. Moreover, the host program is responsible for managing the Xilinx Runtime inter-
face (XRT) and programming the bitstream, that is, programming the FPGA to carry out 
the required computation.

On the other hand, kernel implementation is the part of the application that is exe-
cuted by the FPGA. The kernel is written in HLS and designed to optimally uses accel-
erator resources for the best performance. In this study, the kernels implement the graph 
processing algorithm. Host code and kernels are compiled with a V++ compiler (Vitis 
C++ compiler with the -O2 optimisation flag).

The following sections describe in detail the Host program, the Kernel implementa-
tion, and the optimisation techniques used for the hardware implementation.

Host program

The host program can be divided into two main sections.
The first section is to receive the graph and prepare the pre-processed graph data and 

their parameters. These include the graph block path, the number of vertices, the num-
ber of edges, the number of partitions, and edge blocks. Once the graph information is 
loaded into the host memory, the host program starts to further process data and fetches 
blocks from the disk to the host RAM. This procedure is out of the evaluation time 
measurement zone. This methodology is also used in previous studies such as [16, 51].

The next step is to create buffers to keep aligned all data in the memory. This is 
required to achieve high performance, as the runtime system (XRT) complains about 
memory misalignment. However, this adds extra “memcpy” during the runtime leading 
to a longer execution time.
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After creating an aligned vector and fetching all necessary information of edge blocks 
in the Host memory, the bridge between the host and kernels needs to be created. This 
bridge consists of runtime buffers and commands to program the FPGA device with the 
bitstream. Finally, data exchange between Host Memory and Kernel local memory (e.g., 
BRAM) is implemented using OpenCL functions and specific FPGA kernels.

The last step is to instantiate and configure the kernels for the execution within the 
host code orchestration.

FPGA kernels

The efficiency of the FPGA implementation is primarily affected by the use of structures 
like local arrays. These memory elements are used to store data for a specific function 
or operation in FPGA. The implementation of local arrays requires utilising memory 
resources in terms of Lookup Tables (LUTs), Block RAM (BRAM), and registers. How-
ever, we needed to carefully allocate local arrays to utilise the resources provided by the 
FPGA fully.

One way to minimise resource utilisation (e.g., BRAM) and accommodate big local 
arrays on FPGAs is by partitioning the local arrays and streaming data through small 
and fast FIFOs (“DATAFLOW” and “PARTITION” keywords).

The Vitis compiler builds a single hardware instance from a kernel implementation. 
If the host program executes the same kernel multiple times due to data processing 
requirements, it must do so on the FPGA accelerator sequentially. The order in which 
kernels are executed has an influence on overall application performance. In the pro-
posed design, the kernel linking stage is tuned so that a single kernel can instantiate sev-
eral hardware compute units (CUs). The host program makes several overlapping kernel 
calls, executing kernels concurrently by running independent compute units, which 
increases the performance. In the connectivity configuration of Alveo Boards, the allo-
cation of kernels to specific SLRs of the FPGA and the allocation of memory channels 
is performed in order to optimise the design and improve the scalability. Although the 
PCIe interface of the Alveo boards has 16 lanes, only 15 lanes can be connected to the 
kernel instances so that they can communicate with the host simultaneously (this is also 
confirmed by the official documentation since we must keep one lane for the XRT runt-
ime). Exploiting multiple PCIe lanes significantly optimises the design and the scalabil-
ity, resulting in a close to 7× speedup when using multiple kernels compared to a single 
sequential kernel execution (see Fig. 7).

Hadoop performance model

In this study, we just focused on the FPGA acceleration rather than the Hadoop scal-
ability details, as the map-reduce programming model has been extensively studied in 
the literature, and its performance is modelled and predictable [21, 34]. Thus, for the 
purpose of this study, we forecast the performance by leveraging previous studies that 
analyse the efficiency of algorithms implemented in map-reduce.

Before starting the analysis, it is necessary to highlight some assumptions:

• The graph is stored on the Hadoop Distributed File System (HDFS);
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• The graph is partitioned in parallel by a MapReduce job or custom partitioner.

The first assumption is valid as we target large-scale graphs, which would be far too 
large to be fit in a single node, hence it is likely that they are already stored in a distrib-
uted file system. The second assumption is valid as long as the first assumption is valid. 
Once the graph is placed on the file system, any pre-processing could be done directly in 
MapReduce.

Given the previous assumptions, the scale of the graph requires a distributed system to 
be analysed as a single parallel node would require an unrealistic amount of time. In this 
study, we analyse the benefit of adding FPGA acceleration to an existing cluster, and the 
comparison is between a Hadoop cluster with and without FPGA accelerators.

In our proposed architecture, FPGA accelerators are used only in mappers to compute 
a partial state. The above formula is needed only to account for how a faster mapper will 
impact the total computation time.

As mentioned above, a Hadoop cluster is not available for this study, and we cannot 
provide experimental results. Thus, we only provide forecasts based on Hadoop perfor-
mance models’ algorithmic complexity and link-speed assumptions [21, 34].

The users that already execute distributed graph processing on a Hadoop cluster could 
use the following formula (Eq. 1) to obtain more accurate performance forecasts by sub-
stituting profiler results:

where: Tsplit−input time needed to partition the graph in sub-graphs; N is the num-
ber of iterations of the iterative algorithm; Toverhead is the overhead introduced by 
map-reduce; Tscatter is the time needed to distribute the state vector to all the work-
ers; max(Tmap) is the time needed by the slowest mapper;  Ttransfer is the time needed to 
transfer the state vector to the reducers (account for shuffle and sort); Treduce is the time 
needed to aggregate the partial state vectors.

Evaluation

This section presents the results of the optimised version of the PageRank algorithm for 
large-scale graph processing using cloud-based FPGA accelerators. In large graph pro-
cessing, PageRank is often used as a benchmark to evaluate the performance of different 
graph processing algorithms and systems. PageRank is one of the most computationally 
intensive graph algorithms, and it requires processing a large number of vertices and 
edges. PageRank is an algorithm used to evaluate the importance of each vertex in a 
graph. It has been initially used by commercial search engines to rank web pages by their 
importance. The algorithm assigns a score, called the PageRank score, to each vertex in 
the graph. The score is determined based on the number and importance of the vertices 
that point to it. Vertices with a higher PageRank score are considered more important 
than those with a lower score. By using PageRank as a benchmark, it is possible to meas-
ure the performance of the proposed model in terms of its ability to handle large-scale 
graph data efficiently.

(1)T = Tsplit−input + Toverhead + N (Tscatter +max(Tmap)+ Ttransfer + Treduce)
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We compare the performance of the proposed implementation of the PageRank algo-
rithm, presented in "FPGA implementation" section, against CPU and GPU and FPGA 
architectures. The real hardware implementation has been done on a Xilinx Alveo U250 
from the Xilinx Adaptive Compute Clusters (XACC) [3]. Each XACC server equally dis-
tributes resources into several Virtual Machines (VM) such that each VM has access to 
one FPGA card. The VM software environment is based on Ubuntu 20.04 and includes 
software frameworks for FPGA accelerator deployment (e.g., Vitis, Vivado HLS). Table 9 
reports the specification of the server and hardware accelerator specifications. For the 
CPU comparison with PageRank, we used a sequential version, an OpenMP multicore 

Table 5 The datasets for evaluating our proposed study

We choose them based on the size and the structure of the datasets to be comparable with other works

Graph dataset Vertices Edges Size (GB) Type

LiveJournal [38] 4.8M 0.069 B 1.1 Social web

Web-UK-2005 [12] 39M 0.994 B 16 Web graph

Twitter [36] 41.6 M 1.47 B 23 Web graph

Friendster [38] 68.3M 2.58 B 43 Social web

Table 6 Load time for vertices and edges data from global memory to FPGA-PEs (efficiency = 0.8)

Dataset Vertices Edges Sv (bytes) Se (bytes) Tmem (s) BWMem (GB/s)

LiveJournal 4.85 M 0.069 B 4 8 0.0372 19.2

Web-UK-2005 39.1 M 0.994 B 4 8 0.49 19.2

Twitter 42.1 M 1.47 B 4 8 0.776 19.2

Friendster 68.3 M 2.58 B 4 8 1.36 19.2

Table 7 Computation and Communication Time from CPU host to FPGA

Dataset PCIe‑3 16‑lane 
data rate (GB/s)

Data Size (GB) TPCIe (s) Tinit (s) Tcomm (s) Tcomp (s)

LiveJournal 32 0.526 0.0244 0.1 0.16 1.76

Web-UK-2005 32 7.2 0.27 0.1 0.87 23.2

Twitter 32 11.2 0.44 0.1 1.32 36.00

Friendster 32 20.2 0.7 0.1 2.23 101

Table 8 The performance model report, which has been calculated based on the bottlenecks like 
PCIe Rate, Computation time, Communication time, etc. Here the number of Super Logic Region 
(SLR) used is equal to 1

Dataset Partitions SLRs TFPGA (s) Tbaseline (s) Speedup

LiveJournal 16 1 1.92 12.86 6.7

Web-UK-2005 16 1 24.14 270 9.9

Twitter 16 1 37.3 538.1 7.2

Friendster 16 1 197.8 1340 12.6
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version [15], and GridGraph library [32] as it is one of the most efficient graph process-
ing frameworks on the CPU. The OpenMP version for this evaluation is version 4.0.3, 
and GCC version 9.4.0 is used to compile the software. Regarding the GPU implementa-
tion, we used the cuGraph library [25] for comparison with the CUDA toolkit version 
11.7. “cuGraph” is an open-source GPU graph analytics library that is built on top of 
the RAPIDS ecosystem [25]. It provides a high-performance, easy-to-use, and extensible 
framework for graph analysis on GPUs. In our experiments, we used the NVIDIA V100 
GPU, which is a high-performance GPU based on the Volta architecture.

We selected four different sizes of graphs from the datasets listed in Table 5, from 
a small size graph (LiveJournal) to a large size one (Friendster), to evaluate our opti-
mised version of the PageRank algorithm on a single FPGA. These datasets were 

Fig. 6 Alveo U250 accelerator card. Some parts are skipped for readability

Fig. 7 The scalability of the proposed design

Table 9 The XACC server is used to evaluate the real implementation

Instance Name CPU CPU Freq Cores Memory FPGA board

alveo1.ethz.ch 2× Intel Xeon Gold 6234 3.30 GHz 16 376 GiB Alveo U250
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chosen to evaluate the performance when the size of the graph grows to sizes that 
exceed the memory capacity of the CPU or GPU device memories.

Figure  8 shows that our proposed FPGA implementation of PageRank significantly 
outperforms the sequential and OpenMP execution on CPU for all of the datasets. The 
speedup achieved with CPU ranges from about 9.7x with the smallest dataset up to 
about 26x in the case of the Twitter dataset.

We also compared our algorithm with the GridGraph library [32], which uses a grid 
partition schema similar to ours and uses OpenMP for parallel execution. Our imple-
mentation demonstrates a performance improvement over the GridGraph library, with 
a potential speedup of 4x (Web-UK-2005). In addition to outperforming the CPU solu-
tions, our FPGA implementation demonstrates significant performance improvements 
over the cuGraph library running on the selected GPU. The speedup achieved compared 
to the GPU reaches up to 4.5x with the Web-UK-2005 graph dataset. This dataset does 
not fit in the on-chip memory of the GPU and requires the use of the Unified Mem-
ory [39]. Data needs to be transferred back and forth between the host memory and 
the GPU on-chip memory, which incurs additional overhead and degrades performance. 
Moreover, the GPU experiments with bigger datasets (Twitter and Friendster) failed due 
to insufficient memory on the GPU board.

This shows the benefits of using an FPGA for graph processing tasks, especially when 
dealing with large datasets. We also compared our custom FPGA implementation with 
the PageRank algorithm available in the Vitis Library, as available in the literature [63], 
As shown in Fig.  8, our implementation achieves a speedup of about 28x over that 
library.

Our implementation demonstrates significant performance improvements over tradi-
tional CPU-based solutions, such as sequential execution, OpenMP parallel execution, 
and the GridGraph library, as well as over GPU-based solutions like the cuGraph library 
and pre-built FPGA libraries like Vitis’ library. The speedup achieved with our imple-
mentation highlights the benefits of using a custom FPGA implementation for graph 
processing tasks, especially when dealing with large datasets that do not fit in on-chip 
memory. These results demonstrate that our FPGA implementation is a suitable solution 
for accelerating graph processing tasks.

Figure  9 shows the speedup achieved by our proposed solution in relation to the 
size of the graph. Small graphs like LiveJournal show a speedup of about  10x. Bigger 
graphs like Web-UK-2005 show a speedup of about  14x, and larger graphs like Twit-
ter show a speedup of about  26x. It is worth noting that speedup almost doubles from 
Web-UK-2005 to Twitter, even if Twitter’s size is about 1.5 larger than Web-UK-2005 
(see Table 5). However, the performance boost that is achieved by the proposed work 
decreases when using the larger Friendster dataset. This saturation in performance has 
prompted us to investigate whether a multi-FPGA solution in a distributed system, like 
Hadoop, could potentially enhance the usage of FPGAs for large-scale graph processing.

Graphs bigger than Friendster exceed the computing capabilities of present-era 
machines. Hence, a possible solution to manage such large graphs is to divide them 
across multiple machines by means of distributed computing. Figure  10 presents 
the forecasts for integrating FPGA acceleration in a Hadoop-distributed cluster for 
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Table 10 Alveo U250 platform experimental results in comparison to a software baseline and state-
of-the-art FPGA works. Reported numbers are all in Seconds

a  CPU details are described in Table 9
b  The GPU used for the experiments is a NVIDIA Volta V100
c  N/A indicates that the mentioned study didn’t report this dataset evaluation
d  The experiment hit the GPU memory limit

Dataset Sequential  (CPUa) OpenMP  (CPUa) GridGraph 
 (CPUa)

cuGraph  (GPUb) Vitis 
Library 
(FPGA)

Our 
work 
(FPGA)

LiveJournal 27.01 5.49 3.54 5.28 79.79 2.78

Web-UK-2005 275.44 185.4 34.9 90.73 N/Ac 20.6

Twitter 1443 658.5 88.5 Failedd N/Ac 55.6

Friendster 2258 950 141 Failedd N/Ac 95.4

Fig. 8 Speedup evaluation of the proposed FPGA PageRank algorithm (our work) with the CPU, GPU, and 
FPGA solutions for the LiveJournal, Web-UK-2005, Twitter and Friendster datasets

Fig. 9 Speedup evaluation of the proposed implementation over the size of the graphs versus sequential 
execution. GB=Gigabytes
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large-scale graph processing. Profiling the code and using the results to evaluate Eq. (1) 
shows that using FPGAs is only effective if a significant amount of time is spent in the 
mapping phase. In the forecasts, we assume that most of the time is spent in the map-
ping phase, specifically 51% of the total time. Under these conditions, using the results 
from Table 10, assuming a worst-case scenario where FPGA accelerated nodes achieve 
only a 20x speedup compared to a CPU only nodes, and substituting them in Eq.  (1), 
the forecasts show that it is possible to improve performance by reducing the total time 
by 54%. However, in a most realistic case scenario, most of the time is spent in the map-
ping phase, assuming 80% as a realistic assumption when using a partition method like 
GridGraph to minimise the data transfer. In this case, the time reduction achieved by a 
hybrid CPU-FPGA Hadoop cluster can grow to 84% compared to a CPU-only cluster. 
Figure 10 summarise these forecasts and also shows the best-case (but unlikely) scenario 
where 90% of the total execution time is spent in the mapping phase, showing that it is 
possible to achieve over 90% time reduction under best conditions.

Conclusions
Large graph processing is an emerging field that deals with the analysis and manipula-
tion of large and complex graphs, such as social networks, web graphs, road networks, 
and biological networks. With the increasing amount of data generated by these applica-
tions, the size of graphs is rapidly growing. As a result, the need for efficient and scal-
able graph processing techniques is becoming increasingly important. Combining the 
use of FPGAs with Hadoop for handling large graph datasets is a growing area of inter-
est. FPGAs are specialised integrated circuits that can be customised for specific tasks 
and are highly efficient in executing graph processing algorithms. Hadoop is an open-
source framework commonly used for distributed processing of large datasets. We show 
that utilising FPGA architecture in conjunction with graph partitioning can lead to high 
performance without limitations on the graph sizes, even when dealing with millions 
of vertices and billion of edges. In the case of the PageRank algorithm, for example, our 
optimised FPGA version is faster than any state-of-the-art implementation. The evalua-
tion results demonstrate that our implementation outperforms GridGraph [32] by 2×, 

Fig. 10 Time reduction achieved using FPGAs to accelerate graph processing compared to using a Hadoop 
cluster with no FPGA
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Cugraph [25] by 4.4× and VITIS LIB [4] by 26×. This highlights the efficiency of using 
custom FPGA implementations for graph processing tasks, particularly when dealing 
with large datasets that exceed the capacity of on-chip memory. Given that large-scale 
graphs can exceed the computational capabilities of a single machine, we analysed the 
benefits of our architecture in the context of distributed computing. The combination 
of FPGAs and distributed frameworks, such as Hadoop, can significantly enhance per-
formance, particularly for large-scale datasets. The forecasts show that using FPGAs in 
a Hadoop cluster can reduce the processing time from 59% in the worst-case scenario 
to over 93% under the best conditions. Our current focus is on implementing additional 
optimisations to achieve even higher performance on large-scale graph processing.
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