
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

METHODOLOGY

Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80
https://doi.org/10.1186/s40537‑023‑00745‑0

Journal of Big Data

A new deep learning architecture
with inductive bias balance for transformer oil
temperature forecasting
Manuel J. Jiménez‑Navarro1*, María Martínez‑Ballesteros1, Francisco Martínez‑Álvarez2 and
Gualberto Asencio‑Cortés2

Abstract

Ensuring the optimal performance of power transformers is a laborious task in which
the insulation system plays a vital role in decreasing their deterioration. The insulation
system uses insulating oil to control temperature, as high temperatures can reduce
the lifetime of the transformers and lead to expensive maintenance. Deep learning
architectures have been demonstrated remarkable results in various fields. However,
this improvement often comes at the cost of increased computing resources, which,
in turn, increases the carbon footprint and hinders the optimization of architectures. In
this study, we introduce a novel deep learning architecture that achieves a comparable
efficacy to the best existing architectures in transformer oil temperature forecasting
while improving efficiency. Effective forecasting can help prevent high temperatures
and monitor the future condition of power transformers, thereby reducing unneces‑
sary waste. To balance the inductive bias in our architecture, we propose the Smooth
Residual Block, which divides the original problem into multiple subproblems to obtain
different representations of the time series, collaboratively achieving the final forecast‑
ing. We applied our architecture to the Electricity Transformer datasets, which obtain
transformer insulating oil temperature measures from two transformers in China. The
results showed a 13% improvement in MSE and a 57% improvement in performance
compared to the best current architectures, to the best of our knowledge. Moreo‑
ver, we analyzed the architecture behavior to gain an intuitive understanding of the
achieved solution.

Keywords: Electricity transformer, Insulate oil, Time series, Efficiency, Efficacy,
Forecasting, Deep learning

Introduction
Demand forecasting is a challenging field that has been extensively studied in the lit-
erature [1, 2]. Long-term demand forecasting remains an open field where a perfect
solution has yet to be found. Poor demand prediction can damage power transform-
ers, which is why several studies focus on analyzing the state of power transformers.
The insulation oil is a crucial component in the maintenance of power transformers to
regulate temperature, as high temperatures can reduce the useful life of transformer

*Correspondence:
mjimenez3@us.es

1 Department of Computer
Science, University of Seville,
Seville, Spain
2 Data Science and Big Data
Lab, Pablo de Olavide University,
Seville, Spain

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-023-00745-0&domain=pdf

Page 2 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

[3, 4]. Forecasting the insulation oil helps to analyze the future state of the power
transformer. By setting a defined threshold, it becomes possible to alert when the
transformer insulation oil temperature is going to be harmful before it happens, or to
evaluate the transformer’s safety and avoid unnecessary waste.

However, forecasting the insulation oil presents a challenge in terms of both effi-
cacy and efficiency. Efficacy is necessary to accurately predict future behavior, while
efficiency is necessary to scale the problem to real-world scenarios. Different power
transformers may have different behaviors, which divides the problem into several
subproblems. Each subproblem requires a solution that may require large computa-
tional resources to optimize. For this reason, the solution must be as effective and
efficient as possible to improve the scalability of the solution.

Time series data is one of the most common data types used in the industry. It is
defined as a set of records ordered by time. Time series forecasting has a significant
impact on society due to its importance in a variety of real-world applications such as
electricity, sales, air pollution, and more. The primary goal of time series forecasting
is to predict future records to make plans, mitigate damages, save resources, and so
on. Past records are used to predict future records due to the causal nature of time
series. The number of features in a time series determines whether it is defined as
univariate, with one single feature, or multivariate, with several features [5]. In addi-
tion, two types of forecasting can be considered: one-step, where the model predicts
one record in the future, and multi-step, where the model predicts several records in
the future.

Deep learning is rapidly advancing, with new architectures being developed almost
every year that improve the state-of-the-art in supervised fields such as computer vision
[6, 7], natural language processing [8, 9], and time series forecasting [10, 11]. How-
ever, recent research suggests that achieving state-of-the-art results requires a signifi-
cant increase in computational resources. This trend can be seen in recent studies that
introduce new architectures like the Transformer [12], which suffer from issues such as
quadratic time complexity and high memory usage [13]. Typically, in public competi-
tions, the best models are usually large architectures or ensembles of several architec-
tures [14], which require more computational resources. Moreover, experts have been
using the carbon footprint metric for a long time to raise awareness about the environ-
mental impact of training deep learning architectures. In addition, training, experimen-
tation, and inference with large and/or multiple architectures can be challenging to scale
in resource-limited environments, slowing down academic and industry development.
For these reasons, we focus on developing an architecture that can either improve or
compete with the current best architectures in terms of efficacy while reducing compu-
tational resources.

Since there are not many works that consider the problem of transformer oil tempera-
ture prediction in the literature [15] and reproducing/comparing the results of different
approaches can be challenging. Therefore, we compared our proposed method using one
of the most widely used dataset in this field, namely the Electricity Transformer Temper-
ature (ETT) dataset [13], which has been used by more than 50 works. In this context,
the most effective architectures correspond to the works that obtained the best results
in terms of efficacy in this specific dataset, some of them are analyzed in the "Related

Page 3 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

works" section. The results seem to indicate that our method obtains a remarkable effi-
cacy and efficiency achieving the best results.

We present a novel deep learning architecture for multi-step forecasting, named
Smooth Residual Connections Network (SRCNet),1 which prioritizes efficacy and effi-
ciency. SRCNet employs convolution layers as building blocks and introduces a new
mechanism known as smooth residual stacking. This mechanism builds upon the dou-
bly stacking approach developed by Oreshkin et al. [16] and is analyzed in the "Experi-
mentation" section, which has been shown to yield remarkable results when combined
with residual connections in convolutional layers, as demonstrated by Liu et al. [17]
in the SCINet architecture. By introducing an inductive bias, the proposed mecha-
nism enhances the efficacy of SCINet without imposing any significant restrictions on
the architecture. The motivation for leveraging inductive bias will be discussed in the
"Methods" section.

Our method is compared to the approach proposed by Liu et al. [17], which, to our
knowledge, reported the best results in the ETT dataset. In contrast to their work, we
employ a convolutional neural network with the smooth residual stacking mechanism,
which has demonstrated remarkable improvements in terms of efficacy and efficiency in
several scenarios. Additionally, we include the results of six baseline architectures in the
comparison due to their similarity to our approach.

The main contributions of our work are as follows:

• We introduce a new smooth residual stacking mechanism that improves the efficacy
and efficiency of the architecture in several scenarios.

• We use a time series decomposition with less inductive bias than previous studies,
which maintains both efficacy and efficiency.

• Our application of the proposed architecture to the Electricity Transformer Temper-
ature datasets outperforms the compared architectures in terms of both efficiency
and efficacy.

The remaining sections of this work are organized as follows. In the "Related works" sec-
tion, we provide a review of recent literature on time series forecasting methods with a
focus on efficiency. The "Methods" section describes the proposed architecture in detail.
The Experiments section presents the datasets used, experimental settings, and evalua-
tion metrics. Next, in the "Results and discussion" section, we present and analyze the
results obtained and the behavior learned by the model. Finally, we discuss the conclu-
sions and future directions of this research.

Related works
To address the efficiency issue in making effective forecasting for ETT dataset, several
architectures have been developed and applied using deep learning approaches. One of
the main challenges in this dataset is the need for a large window size, which results
in efficiency issues that considerably increase computational costs. Previous works have

1 All the code employed in the experimentation has been included in the following repository: https://github.com/man-
jimnav/SRCNet.

Page 4 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

analyzed this problem using two approaches: the sparse approach and the inductive bias
approach.

Sparse approach

A recently proposed approach is to use the self-attention mechanism [12] for time
series forecasting. However, it suffers from quadratic time complexity and high mem-
ory usage that make its application difficult. The sparse approach attempts to improve
the efficiency of the self-attention mechanism by adding downsampling of the records
in the input window using some heuristic. In general, these studies are based on the
sparse nature of the data, which may not be fully proven. Sparsity leads to an informa-
tion bottleneck that limits the amount of information available based on some criteria.
In our work, we do not use a self-attention approach to avoid increasing computational
resources or information loss by adding sparsity.

The first proposal applied to the ETT dataset was the Informer architecture developed
by Zhou et al. in 2020, with the proposed ProbSparse Self-Attention [13]. This mecha-
nism avoids storing and calculating the dot product between all queries and keys based
on the hypothesis that few pair query-keys contribute to most self-attention scores.
Using this sparsity hypothesis, the queries are truncated based on the top pairs with a
greater contribution from a subset of pairs selected by a probabilistic method.

Klimek et al. proposed QuerySelector in 2022 [18] as an improvement to Informer.
This architecture uses the same hypothesis as in the previous work, but instead of sub-
sampling the pairs based on a probabilistic method, they subsample the query and keys
based on a defined hyperparameter. This hyperparameter allows one to improve the
control of the sparsity and the reproducibility of the problem.

Du et al. developed the SCformer architecture in 2022 [19] with the SCAttention
mechanism. The architecture uses an encoder-decoder architecture similar to the origi-
nal transformer replacing the self-attention mechanism with SCAttention. The key idea
is to divide the input window into segments of the same size according to the period.
Attention scores are computed using the correlation between each segment of queries
and keys, which reduces the data precision, but reduces the computation.

Another approach to obtain a sparse representation of the input data would be to
apply some dimensionality reduction technique. Žagar et al. [20] applied the principal
component analysis to spectral data obtaining a remarkable reduction. Despite being
widely used, this process still required storing and processing all the time series data
to build the principal components. In addition, mechanism like self-attention which
requires sequential data may not be used.

Inductive bias approach

Some architectures introduce an inductive bias based on some hypothesis about the
nature of the problem. For example, some solutions divide the problem into trend and
seasonality, resulting in competitive results. However, the inductive bias may restrict
solutions not inside the solution subspace, degrading the efficacy and generality. The
effect of inductive bias is discussed in the "Methods" section. In this work, we use
a different inductive bias approach, which does not impose a strong limitation on the
problem.

Page 5 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

Woo et al. proposed CoST [21], an approach to learning the trend and seasonality
of time series through contrastive learning. This approach develops two contrastive
loss functions and two components for trend and seasonality. The Trend Feature Dis-
entangler (TFD) uses a mixture of autoregressive experts to represent the trend and
a variation of MoCo contrastive loss [22]. The Seasonal Feature Disentangler uses a
layer with learnable Fourier transformations and a contrastive loss for the amplitude
and phase of each representation.

Wu et al. proposed the Autoformer [23], an architecture that decomposes time
series into trend and seasonality using the series decomposition and autocorrela-
tion block. The series decomposition block uses moving averages to extract the trend
and seasonality from the input. The autocorrelation block is used on period-based
dependencies using autocorrelation to group similar series. This allows the series to
focus on specific periods instead of specific records.

Liu et al. developed the Sample Convolution and Interaction Network (SCINet)
[17], an architecture that takes advantage of multiple representations obtained at
different temporal resolutions. The principal block is the SCI-block which splits the
time series into even and odd records and extracts features for both using interaction
learning. Then, all the learned features are used to produce the final forecasting.

In some scenarios, the inductive bias is introduced by including information about
a physical model that supports the estimations. Kosanić et al. [24] developed a sur-
vey where they illustrate different approaches to geophysics forecasting, in which the
combination of physical and statistical models is described, using examples. However,
in some scenarios, the physical model may not be available, which limits the applica-
tion of this inductive bias approach.

Methods
In this section, we provide a detailed explanation of the main components and
hypotheses of the architecture. Specifically, the "Hypothesis" subsection discusses
the principal hypothesis and motivation behind the architecture. The "Nomenclature"
subsection defines all symbols used to describe the architecture. The "Embedding"
subsection provides a detailed description of the embedding layer. Lastly, the "Smooth
Residual Block" section introduces the basic component in the smooth residual stack-
ing mechanism.

Hypothesis

Inductive bias is used by some machine learning algorithms to design a method that
can solve a problem based on certain assumptions [25]. These assumptions impose
restrictions or regularization that prioritize a solution subspace over others. In the
context of deep learning algorithms, these assumptions can be included in the archi-
tecture design by the transformations applied by the learned weights [26].

The hypothesis of our proposed architecture relates to the effect of inductive bias
on the efficacy of the architecture, which we refer to as the inductive bias-efficacy bal-
ance hypothesis.

Page 6 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

Hypothesis 1 (H1) Strong restrictions introduced by inductive bias may improve effi-
ciency by reducing the probability of finding a solution outside the prioritized solution
space.

The proposed mechanism is motivated by our hypothesis of bias-efficacy balance 1
(H1). The hypothesis suggests that incorporating an inductive bias based on assump-
tions into the architecture design improves efficiency by prioritizing a solution subspace
and penalizing or removing solutions that do not fit the design. This increases the likeli-
hood of converging into a solution within the prioritized subspace. Conversely, an archi-
tecture with less bias has to explore a larger solution space, potentially increasing the
time needed to converge to a local minimum.

However, limiting or prioritizing the solution space does not guarantee that solutions
outside the subspace perform worse than solutions inside it. This may lead to suboptimal
solutions, but mitigating the effect of inductive bias may help the architecture find an
optimal solution that it could not previously discover. Our proposal aims to find a bal-
ance by incorporating enough inductive bias to improve efficiency without excessively
prioritizing the suboptimal solution space, thereby preserving efficacy.

Previous studies have designed architectures for time series forecasting which decom-
pose the input sequence into its constituent parts of trend, seasonality, and noise. Such
architectures introduce a strong inductive bias that prioritizes a solution subspace which
can be modeled by the combination of these components. In our work, we propose a
decomposition of the input sequence that must satisfy the following properties:

1 Each decomposition must remove the complexity of the input window by removing
its smoothed version.

2 The decomposition is performed sequentially, such that the next decomposition
depends on the previous decomposition.

3 Each Smooth Residual Block focuses on one component without sharing informa-
tion with other blocks.

4 Smooth Residual Blocks collaborate using the different decompositions to produce
the final prediction.

Nomenclature

To understand the architecture, we need to detail the nomenclature used in this section
and the following. The elements implied are as follows:

• W denotes the number of past records used to feed the architecture and generate the
forecasting, also known as window size.

• D denotes the number of features in each record. Note that in univariate time series
D = 1.

• F denotes the embedding dimension size used in the embedding layer.
• SW ,D denotes the input window, which is a set of W time-ordered records with D

features.
• SW ,F denotes the encoded input window after embedding with F features.

Page 7 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

• SW ,F
Smooth denotes the smoothed version of the encoded input window.

• ŜW ,F denotes the result of the substrate of the original encoded input and the smooth
version of the encoded input window.

• H denotes the number of future steps to forecast, also known as the horizon size.
Note that in one-step forecasting H = 1.

• P denotes the number of predicted features. Note that it may or may not be equal to
D.

• N denotes the number of Smooth Residual Blocks used in the architecture.
• OH ,P denotes the partial forecast of the Smooth Residual Blocks. All partial forecasts

are added to produce the final forecasts.

Embedding

The embedding layer is the first transformation applied to the input sequence, using a
causal convolution layer that considers only the previous records to apply the convolu-
tion to a record at time t. To achieve causality, the input sequence is padded by replicat-
ing the first record K − 1 times, where K is the kernel size of the convolution layer. The
embedding layer encodes the initial sequence with D features into a set of causal features
F, where F is determined by the number of filters used in the convolution layer. Addi-
tionally, a positional encoding is added to provide relative information about the input
sequence.

Smooth Residual Block

The Smooth Residual Block is a crucial component of the architecture. Its main pur-
pose is to decompose an input sequence SW ,F into N components, the sum of which is

Fig. 1 Diagram of the architecture developed and the Smooth Residual Block

Page 8 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

SW ,H . To achieve this, causal convolutions are used as the primary layer, as previous
studies have shown that Transformers do not outperform convolutions in time series
forecasting [27].

Figure 1 shows the complete architecture developed and details the Smooth Resid-
ual Block which constitutes the main component.

The initial Smooth Residual Block produces a partial prediction by generating the
SW ,F
Smooth component for the embedded input window. It is important to note that the

decomposition is applied to the encoded version of the input sequence, denoted as
SW ,F . This allows the model to handle both univariate and multivariate time series, as
all types are projected onto a latent space. Moreover, encoding the input may aid in
identifying a latent space that captures the time series in a more informative feature
space.

The component SW ,F

Smooth
 is generated by the SmoothLayer which takes the previ-

ous sequence SW ,F as input and outputs the component SW ,F

Smooth
 . Decomposition is

achieved using moving averages, which allows us to obtain a smooth representation
of the original sequence. By choosing an appropriate window size or repeating the
moving average several times, we can obtain the trend. However, choosing a shorter
window size applied once can result in an intermediate function with a combination
of trend and seasonality where the noise is reduced. We are interested in this repre-
sentation because we do not want to restrict the decomposition of the input window
into trend and seasonality.

As we use moving averages, we need to define a hyperparameter for the window size
in all Smooth Residual Blocks. The hyperparameter is the same for all layers except
for the last one, whose window size is one and the sequence remains unchanged. This
means that the last layer focuses only on the residuals of all previous layers, mostly
obtaining the noise of the original sequence.

After the component SW ,F
Smooth is generated in the first Smooth Residual Block, it

is subtracted from the input sequence SW ,F . Then, the next block applies the same
process using the residual ŜW ,F as the input window. This step is essential because
it allows the blocks to focus on a different aspect of the sequence. Additionally, it is
important to standardize the input to maintain each component within the distribu-
tion of the data when we subtract the component from the original sequence.

The component SW ,F
Smooth is fed into two causal convolution layers that output the pre-

diction OH ,P
i for layer i. Finally, the output of each block is added to obtain the final

prediction. As the total sum is used for the final prediction, the blocks collaborate
using their respective representations of the input. This collaboration, combined with
the decomposition explained above, motivates a collaborative division of the problem.

Experimentation
This section provides details on the training and evaluation process of different mod-
els for each dataset, along with the results obtained. The "Datasets" section analyzes
the datasets used in the experimentation. The "Experimental settings" section lists
the different models used for comparison and the hyperparameter space used for grid

Page 9 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

search. Finally, the "Evaluation metrics" section outlines the metrics proposed for
evaluating the efficacy and efficiency of the models.

Datasets

The data studied in this work comes from the Electricity Transformer Datasets [13],
which includes data from two electricity transformers at two stations in China. The data
was collected on an hourly basis from July 2016 to July 2018. The target of both datasets
is to forecast the transformer oil temperature (OT), which reflects the condition of the
power transformer.

The data contains several features related to the transformer load. However, recent
studies have shown that incorporating these features leads to increased errors compared
to the univariate version. Therefore, we have chosen to focus solely on using the trans-
former oil temperature as input without any additional features.

Figure 2 shows the evolution of the transformer oil temperature in the datasets, while
Fig. 3 shows the autocorrelation and partial autocorrelation plots. ETTh2 shows greater
variance and stronger decays in the autocorrelation plot than the ETTh1 dataset.

Fig. 2 Transformer oil temperature variable in ETTh1 and ETTh2 datasets

Fig. 3 ETTh1 and ETTh2 autocorrelation plots (left) and partial autocorrelation plots (right)

Page 10 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

The plots demonstrate a different behavior for both datasets, which encourages us to
use different architectures that model the behavior of each dataset independently. This is
one of the reasons for finding a method that is not only effective but also efficient.

Experimental settings

The processing applied to the datasets is the same as proposed in the original work
[13], using identical divisions for training, validation, and testing to ensure fair com-
parisons with other architectures. The data is standardized using the training division
to obtain the mean and standard deviation.

To ensure a fair comparison between the architectures explored, a grid search over
the hyperparameters has been selected as the optimization method. The hyperparam-
eters optimized during the grid search are defined in Table 1. This approach ensures
that all explored architectures use the same hyperparameter space.

Some hyperparameters are not included in the grid search due to computational
limitations or because they do not significantly affect the efficacy of the model. A
batch size of 32 was chosen, since it is a standard value that generally yields good
results. The number of epochs was set to 100, which is more than enough for the
selected architectures to converge. The model is considered to have converged if the
validation error does not decrease for 10 consecutive epochs. Once the model con-
verges, the training stops, and the weights with the lowest error are restored. A pre-
diction horizon of 24 future steps is considered sufficient. To reduce the influence of
randomness, all experiments for each combination of hyperparameters were repeated
three times, minimizing the impact of abnormal results.

The models selected to compare with SRCNet are: ARIMA as a classical method,
the Informer architecture which originally published the ETT dataset, a convolu-
tional neural network (CNN) used as the baseline, NBEATS to compare our proposed
mechanism with theirs, SCINet, known for its excellent efficacy results, and HLNet,
the predecessor of SRCNet.

The ARIMA and Informer architecture results are obtained from the work of Liu
et al. [17] as the experimentation is reproduced using the same settings.

A CNN consists of a set of convolutional layers with a final fully-connected layer
to transform the output into predictions. This simple model serves as a baseline for
comparing with the other methods.

The NBEATS [16] model is based on blocks called BEAT, which are made up of
a set of fully-connected layers. Each BEAT obtains a decomposition of the input
sequence called the backcast and partial forecasting. The backcast is subtracted from

Table 1 Hyperparameter space used during the grid search

Hyperparameter Values

Window size 24, 48, 72, 96, 120

Embedding size 8, 16

Neurons for each layer 8, 16, 32, 64

Layers 1, 2, 3

Kernel size for each layer 3, 5, 7

Page 11 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

the window, and the result is fed into the next BEAT. The partial components pro-
posed in the method decompose the window sizes between trend and seasonality. The
final prediction is the sum of each forecast obtained in each BEAT.

The SCINet [17] model primarily uses convolutional layers to generate the forecast.
The main mechanism is interaction learning, which subsamples the input window and
divides it between odd and even sample positions. Interaction learning is applied to the
subsamples, generating the features that are concatenated to obtain the forecasting.

The HLNet [28] model employs the LSTM [29] as the primary layer. This model
divides the problem into difficulty levels, assigning each level to a specific layer with its
own output. The final output feeds the representation of each level to the final fully-
connected layer.

Evaluation metrics

This document considers two types of metrics: efficacy and efficiency. Efficacy metrics
measure the accuracy of our predictions compared to the actual behavior of the time
series. Efficiency metrics, on the other hand, measure the resources required to develop
and deploy the solution.

The notation used for the metrics is as follows:

• Let t be the prediction moment.
• Let H be the number of future events to forecast (horizon).
• Let yt+h be the predicted value for the moment t + h.
• Let ŷt+h be the real value for t + h.
• Let N be the number of instances used to evaluate the metric.

The Mean Absolute Error (MAE) was used as the efficacy metric due to its simplicity.
This metric obtains the average over the absolute error for all instances.

Here, |yt+h − ŷt+h| denotes the absolute value of the difference between the prediction
and the actual value. The error is averaged over all horizons.

As for efficiency metrics, we used the training time and the number of model param-
eters. Training time is important because it is the stage where the model consumes the
most resources, and we need to run several experiments to find the optimal hyperpa-
rameters. The time is measured in minutes from the start of training to convergence of
the model, which is defined as the point where there is no improvement in the valida-
tion dataset after 10 epochs. The number of model parameters is particularly relevant in
resource-limited contexts where memory is scarce and large or multiple models are not
feasible.

(1)MAE =
1

N

N∑

n=1

1

H

H∑

h=1

|yt+h − ŷt+h| ,

Page 12 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

Results and discussion
The "Efficacy and efficiency analysis" section discusses the results obtained in the evalu-
ation process. "Output analysis" section analyzes the behavior learned by our proposal
showing the partial predictions. Finally, "Statistical test" section applies a Bayesian statis-
tical test to support the conclusions obtained.

Efficacy and efficiency analysis

This section is divided into two subsections to analyze the performance of our pro-
posed methodology: efficacy and efficiency. In the first section, the efficacy is studied
by comparing our proposal with the architectures specified in "Experimental settings"
section, while in the second section the efficiency is examined focusing on the models
with the best efficacy obtained in previous section.

Efficacy

The results are presented in terms of standardized efficacy and efficiency metrics.
Each table displays the metrics for the models with the best efficacy found during the
grid search. As experiments for each combination of hyperparameters are repeated
three times, the average and standard deviation for the efficacy metric are reported.

Table 2 displays the standardized MAE metrics for the best models for each window
size. The model with the best MAE for a given window size is indicated in bold, while
the second-best result is underlined. The table also highlights the best MAE for all
window sizes in each dataset for the top two models in bold and with an asterisk.

Table 2 MAE metric for the best models for every window size and dataset tested

a These results have been obtained from the Liu et al. work. Note that the concept of input window does not exists in ARIMA,
which explains why there are repeated values in each window. In addition, randomness does not affect ARIMA which
justifies there is no standard deviation

Dataset Window ARIMA Informera CNNa HLNet NBEATS SCINet SRCNet

ETTh1 24 0.290 0.247 0.172
(±0.030)

0.197
(±0.014)

0.201 (
±0.012)

0.186(±0.006) 0.138
(±0.010)

48 0.167(±0.015) 0.193
(±0.019)

0.210
(±0.043)

0.166
(±0.021)

0.137
(±0.006)

72 0.139(±0.013) 0.202
(±0.007)

0.152
(±0.009)

0.149
(±0.013)

0.131
(±0.003)

96 0.144(±0.007) 0.205
(±0.014)

0.149
(±0.013)

0.146
(±0.010)

*0.129
(±0.001)

120 0.156
(±0.012)

0.192
(±0.007)

0.15
(±0.018)

*0.138
(±0.010)

0.131
(±0.004)

ETTh2 24 0.433 0.240 0.205
(±0.008)

0.333
(±0.016)

0.197
(±0.003)

0.198(±0.006) 0.198(±0.006)

48 0.198(±0.002) 0.339
(±0.011)

0.201
(±0.003)

0.201
(±0.009)

0.195
(±0.005)

72 0.195
(±0.004)

0.334
(±0.010)

0.202
(±0.002)

0.196
(±0.009)

0.189
(±0.003)

96 0.200
(±0.005)

0.338
(±0.003)

0.207
(±0.003)

0.197(±0.004) *0.193
(±0.002)

120 0.201
(±0.005)

0.339
(±0.004)

0.206
(±0.002)

0.198(±0.004) 0.194
(±0.005)

Page 13 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

As shown, SRCNet consistently delivers the best results across all datasets and win-
dow sizes, followed by SCINet. On the other hand, HLNet yields a higher error rate
than all other models, indicating that the LSTM used inside is not suitable for achiev-
ing accurate results.

In the ETTh1 dataset, using window sizes of 24 and 48 appears to be insufficient to
obtain all the information necessary for accurate forecasts, particularly for SCINet,
NBEATS, and CNN, which seem to have a great difference in MAE with larger win-
dow sizes. In contrast, SRCNet and HLNet exhibit less variation between shorter and
longer window sizes. Additionally, there is a clear relationship between window size
and MAE for SRCNet and SCINet. Nevertheless, SCINet requires a window size of
120 to achieve the same MAE as SRCNet, which consumes five times more resources
during inference. Moreover, SRCNet obtains the lowest standard deviation between
experiments, which is ten times lower than that of SCINet in the best-case scenario.

In the ETTh2 dataset, the MAE is higher than that of ETTh1, indicating that this
dataset is more challenging to predict. There is no apparent correlation between win-
dow size and the error obtained. In general, larger window sizes, such as 96 and 120
do not appear to improve the efficacy of the models. The best performance is achieved
in CNN, SRCNet, and SCINet with a window size of 72, while HLNet and NBEATS
perform best with a window size of 24. Furthermore, the difference between the best
and worst MAE is lower in ETTh2 than in ETTh1. Additionally, the standard devia-
tion between experiments appears to be lower for all models. Specifically, NBEATS
and SRCNet have the lowest standard deviation, followed by SCINet. When compar-
ing the configuration with the best efficacy, the standard deviation for NBEATS and
SRCNet is three times better than that of SCINet.

Figure 4 shows the MAE for all models trained on the ETTh1 and ETTh2 datasets.
The box plots show the distribution of the MAE obtained for each hyperparameter
combination during the grid search. The figure seems to indicate that the results
obtained by the CNN in Table 2 are outliers, which are not representative of the com-
plete distribution shown in this figure.

For the ETTh1 dataset, CNN exhibits the highest interquartile range with a decreas-
ing median as the window size increases. HLNet has a smaller interquartile range,
but the model does not appear to take advantage of more samples in the window;

Fig. 4 MAE for each model and window size

Page 14 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

the median remains almost constant regardless of the window size. NBEATS seems
to improve efficacy as the window size increases, but the results are still worse than
those of SRCNet, which performs better overall, particularly for larger window sizes.
SCINet appears to have the better median and interquartile range for short window
sizes, but SRCNet outperforms SCINet for larger window sizes.

In the ETTh2 dataset, errors are greater than in ETTh1, as shown in Table 2. HLNet
achieves the worst efficacy by a large margin, regardless of window size. The best
models are NBEATS, SCINet, and SRCNet, but the median for NBEATS decreases as
the window size increases, suggesting that larger window sizes introduce noise that
harms efficacy. In general, SRCNet obtains the global minimum, followed by SCINet,
without a strong relationship between window size and error.

Efficiency

Table 3 displays the training times required for the best models to converge, analyzed
for each window size and dataset. The training time with the lowest value for each

Table 3 Time required (minutes) to train the two models with the best efficacy

Dataset Window size SCINet SRCNet

ETTh1 24 1.10 0.50
48 2.14 1.26
72 2.81 1.90
96 3.70 1.01

120 1.75 1.04
ETTh2 24 3.97 3.23

48 5.23 1.20
72 5.60 1.57
96 5.05 1.17

120 7.24 1.25

Fig. 5 Training time (in minutes) for each model and window size

Page 15 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

window size is highlighted in bold. SRCNet, in general, shows better training times
compared to SCINet.

In ETTh1, SCINet exhibits the poorest efficiency for all window sizes, indicating
that the mechanism used in the architecture is highly inefficient. However, SRCNet
achieves better results than SCINet with a time reduction of over 50.

In ETTh2, SCINet has the highest training times for each window size, which has
increased significantly compared to the times obtained in ETTh1. This suggests that con-
vergence in ETTh2 is considerably more challenging than in ETTh1. However, SRCNet
does not show any significant increase in training time, except for a window size of 24 h.

Figure 5 illustrates the training time (in minutes) for all trained models.
For the ETTh1 dataset, CNN exhibits the lowest training times for window sizes of 24,

48, and 72. However, for larger window sizes, the training time increases significantly.
HLNet displays the same trend as CNN, with increasing training times for larger win-
dow sizes. In contrast, NBEATS shows a different behavior, with lower training times for
larger window sizes. While SRCNet does not achieve better training times than faster
models like CNN or NBEATS, it remains almost constant, regardless of the window size.

For the ETTh2 dataset, NBEATS has the lowest median training time for all window
sizes, followed by CNN. HLNet and SRCNet exhibit slightly greater training times for
window sizes of 24 and 48, which then slightly decrease.

In general, the size of the training window does not significantly affect the time
required for modeling until convergence. SCINet has the highest training times com-
pared to all other models, regardless of the window size.

Output analysis

To gain a deeper understanding of the behavior learned by SRCNet, we analyze the par-
tial predictions generated by the model. We used the best hyperparameters obtained for
the ETTh1 dataset, and partial predictions were obtained from the test set.

Figure 6 illustrates the real behavior of the time series (red), the final prediction of
SRCNet (dashed blue), and the partial predictions obtained from the three Smooth
Residual Blocks (represented as level 0, 1, and 2) in green shades. The first block appears
to predict a baseline for the prediction, almost matching the mean of the future records.

Fig. 6 Output produced by SRCNet for an instance of ETTh1 dataset. The forecast includes the output
produced by the levels of SRCNet, which is summed up as the final forecast

Page 16 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

The second block focuses on capturing the global shape of the prediction, with a particu-
lar emphasis on the ups and spikes, while the last block seems to concentrate on predict-
ing the downs.

In the overall prediction, as observed in Fig. 7, the first block produces an initial
estimate of the predictions. The second and third blocks appear to build on this base
prediction, focusing on the spikes of the prediction. Specifically, the second block
obtains a global representation of the spikes, while the last block appears to capture
smaller changes.

Statistical tests

In this section, we apply a statistical test to support our conclusions based on the
results obtained during the grid search. We use the Bayesian version of the Wilcoxon
signed-rank test proposed by Benavoli et al. [30] due to the well-known issues with
p-values in hypothesis testing [30].

For each combination of hyperparameters, the Bayesian test compares each pair of
metrics for models A and B, producing three output values. The first value represents
the probability that model A is better than model B (p(A>B)), the second value repre-
sents the inverse scenario (p(B>A)), and the third value represents the probability that
model A and B are similar (p(Rope)). To establish the range of statistical similarity, we

Fig. 7 Output produced by SRCNet for the complete test set of the ETTh1 dataset. The forecast includes the
output produced by the SRCNet levels, which summarizes the final forecast

Table 4 Results of Bayesian analysis comparing the efficacy of all reference models with SRCNet

Dataset Reference p (reference>SRCNet) p (Rope) p
(SRCNet>reference)

ETTh1 CNN 1 0 0

NBEATS 1 0 0

HLNet 1 0 0

SCINet 1 0 0

ETTh2 CNN 1 0 0

NBEATS 1 0 0

HLNet 1 0 0

SCINet 1 0 0

Page 17 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

need to set a threshold, which will be determined after analyzing the results for each
metric.

As the selected method is a non-parametric paired test, we need to obtain each pair
of results for each combination of hyperparameters in both datasets. However, each
model has a different number of hyperparameters, and some are shared while others
are not. Therefore, we only select the shared hyperparameters to obtain the pairs, and
then choose the best combination of non-shared hyperparameters.

Table 4 presents the results of the Bayesian test applied to WAPE. The probabilities
that the reference model has a greater WAPE are represented by p(reference>SRCNet),
while the contrary is represented by p(SRCNet>reference), and the probability of non-
significant changes is p(Rope).

The statistical test used a threshold of 0.1% of the relative error to determine the range
of statistical similarity. This means that results with an error difference of less than 0.1%
are considered similar. The test indicates a 100% probability in all cases, indicating that
SRCNet performs better than the reference models and generally achieves lower errors.

Table 5 displays the Bayesian test applied to the efficiency metric. Once again, the
probabilities are shown as p(reference>SRCNet) for the probability that the reference
model has a longer training time, p(SRCNet>reference) for the opposite scenario, and
p(Rope) for the probability of non-significant changes.

In this case, a 60-second threshold was selected, which means that training times
with differences of less than 60 seconds are considered similar. The results for CNN,
NBEATS, and HLNet indicate that they are generally similar to SRCNet across all data-
sets. Despite the fact that SCINet has the closest efficacy results to SRCNet, its efficiency
is clearly worse in both datasets.

Conclusions and future works
SRCNet has been demonstrated to outperform one of the best methods reported in
the literature for this dataset [17] in terms of efficacy, while also improving efficiency.
Efficiency was achieved using the approach of decomposing the input window, which
differed from conventional trend and seasonality decomposition. This supports the
hypothesis that reducing bias in the architecture may improve efficacy, as greater free-
dom allows for a more optimal data decomposition. The introduction of the Smooth
Residual Block also provided the necessary amount of bias to enhance efficacy without

Table 5 Results of Bayesian analysis comparing the efficiency for all reference models with SRCNet

Dataset Reference p (reference>SRCNet) p (Rope) p
(SRCNet>reference)

ETTh1 CNN 0 1 0

NBEATS 0.31 0.69 0

HLNet 0.25 0.75 0

SCINet 1 0 0

ETTh2 CNN 0 1 0

NBEATS 0 1 0

HLNet 0.02 0.98 0

SCINet 1 0 0

Page 18 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

compromising efficiency. In future work, an extended version of the architecture could
be explored to assign importance to each block and reduce the impact of noise in the last
block, if necessary. Additionally, an investigation into the impact of inductive bias on
architectures could be conducted to assess their performance in terms of generalization,
data scaling, and efficiency.

Abbreviations
CNN Convolutional neural network
LSTM Long short‑term memory
HLNet Hierarchical learning network
MAE Mean absolute error
SRCNet Smooth residual connection network
SCINet Sample convolution and interaction network
ETTh1 Hourly electricity transformer temperature dataset for trasformer 1
ETTh2 Hourly electricity transformer temperature dataset for trasformer 2
OT Transformer oil temperature

Acknowledgements
The authors would like to thank the Spanish Ministry of Science and Innovation for the support under the projects
PID2020‑117954RB and TED2021‑131311B, the European Regional Development Fund and Junta de Andalucía for pro‑
jects PY20‑00870, PYC20 RE 078 USE and UPO‑138516.

Author contributions
MJJN: conceptualization, methodology, software development, writing. MMB: writing reviewing, statistical test analysis,
supervision. FMA: writing reviewing, validation, supervision. GAC: data curation, writing reviewing, supervision. All
authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The dataset has no restrictions that all data can be acquired at the related site.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 20 October 2022 Accepted: 2 May 2023

References
 1. Román‑Portabales A, López‑Nores M, Pazos‑Arias JJ. Systematic review of electricity demand forecast using ANN‑

based machine learning algorithms. Sensors. 2021; 21(13):4544.
 2. Martínez‑Álvarez F, Troncoso A, Asencio‑Cortés G, Riquelme JC. A survey on data mining techniques applied to

electricity‑related time series forecasting. Energies. 2015; 8(11):13162–93.
 3. Thiviyanathan VA, Ker PJ, Leong YS, Abdullah F, Ismail A, Jamaludin ZM. Power transformer insulation system: a

review on the reactions, fault detection, challenges and future prospects. Alex Eng J. 2022; 61(10):7697–713.
 4. Dursun K. Oil and winding temperature control in power transformers. In: Proceedings of the International Confer‑

ence Power engineering, energy and electrical drives, 2013; pp. 1631–1639.
 5. Beeram S.R, Kuchibhotla S. Time series analysis on univariate and multivariate variables: a comprehensive survey. In:

Proceedings of the International Conference on Communication Software and Networks, 2021; pp. 119–126.
 6. Tabrizchi H, Razmara J, Mosavi A, Varkonyi‑Koczy A.R. Deep learning applications for COVID‑19: a brief review. In:

Proceedings of the International Conference on Research and education: traditions and innovations, 2022; pp.
117–130.

 7. Alzubaidi L, Zhang J, Humaidi AJ, Al‑dujaili A, Duan Y, Al‑Shamma O, Santamaría J, Fadhel MA, Al‑Amidie M, Farhan
L. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data, 2021;
8(1):53.

 8. Al‑Maleh M, Desouki S. Arabic text summarization using deep learning approach. J Big Data. 2021; 7(1):56.

Page 19 of 19Jiménez‑Navarro et al. Journal of Big Data (2023) 10:80

 9. Zewdu A, Yitagesu B. Part of speech tagging: a systematic review of deep learning and machine learning
approaches. J Big Data. 2022; 9(1):10.

 10. Aghdam M, Tabbakh SK, Chabok S, Kheirabadi M. Optimization of air traffic management efficiency based on deep
learning enriched by the long short‑term memory (LSTM) and extreme learning machine (ELM). J Big Data. 2021;
8(1):54.

 11. Shen J, Shafiq M. Short‑term stock market price trend prediction using a comprehensive deep learning system. J Big
Data. 2020; 7(1):66.

 12. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A.N, Kaiser L, Polosukhin I. Attention is all you need. In:
Proceedings of the International Conference on Neural Information Processing Systems. 2017; pp. 6000–6010.

 13. Zhou H, Zhang S, Peng J, Zhang S, Li J, Xiong H, Zhang W. Informer: beyond efficient transformer for long sequence
time‑series forecasting. In: Proceedings of the International Conference on Advancement of Artificial Intelligence.
2021; pp. 11106–11115.

 14. Makridakis S, Spiliotis E, Assimakopoulos V. M5 accuracy competition: results, findings, and conclusions. Int J Fore‑
cast. 2022; pp. 1346–1364.

 15. Sui J, Ling X, Xiang X, Zhang G, Zhang X, Transformer oil temperature prediction based on long and short‑term
memory networks. In: Proceedings of the International Conference on Big Data, 2021; pp. 6029–6031.

 16. Oreshkin B.N, Carpov D, Chapados N, Bengio Y. N‑beats: Neural basis expansion analysis for interpretable time series
forecasting. arXiv. 2019.

 17. Liu M, Zeng A, Xu Z, Lai Q, Xu Q. Time Series is a Special Sequence: Forecasting with Sample Convolution and Inter‑
action. arXiv. 2021.

 18. Klimek J, Klimek J, Kraśkiewicz W, Topolewski M. Query selector‑efficient transformer with sparse attention. Softw
Impacts. 2022; 11(1): 100187.

 19. Du D, Su B, Wei Z. SCformer: segment correlation transformer for long sequence time series forecasting. In: Proceed‑
ings of International Conference on Learning Representations. 2022; pp. 1–12.

 20. Žagar J, Mihelič J. Creation of attribute vectors from spectra and time‑series data for prediction model develop‑
ment. IPSI Trans Internet Res. 2019; 15(2):1054.

 21. Woo G, Liu C, Sahoo D, Kumar A, Hoi S. CoST: Contrastive learning of disentangled seasonal‑trend representations
for time series forecasting. In: Proceedings of International Conference on Learning Representations. 2022; pp. 1–18.

 22. He K, Fan H, Wu Y, Xie S, Girshick R. Momentum contrast for unsupervised visual representation learning. In: Proceed‑
ings of International Conference on Computer Vision and Pattern Recognition, 2020; pp. 9726–9735.

 23. Wu H, Xu J, Wang J, Long M. Autoformer: Decomposition transformers with auto‑correlation for long‑term series
forecasting. In: Proceedings of International Conference on Neural Information Processing Systems. 2021; pp. 1–12.

 24. Kosanić M, Milutinović V. A survey on mathematical aspects of machine learning in geophysics: The cases of
weather forecast, wind energy, wave energy, oil and gas exploration. In: Proceedings of the International Confer‑
ence on Embedded Computing. 2021; pp. 1–6.

 25. Goyal A, Bengio Y. Inductive biases for deep learning of higher‑level cognition. arXiv. 2020.
 26. LI X, Grandvalet Y, Davoine F. Explicit inductive bias for transfer learning with convolutional networks. In: Proceed‑

ings of the International Conference on Machine Learning. Machine Learning Research. 2018; pp. 2825–2834.
 27. Zeng A, Chen M, Zhang L, Xu Q. Are transformers effective for time series forecasting?. arXiv. 2022.
 28. Jiménez‑Navarro MJ, Martínez‑Álvarez F, Troncoso A, Cortés GA. HLNet: A novel hierarchical deep neural network

for time series forecasting. In: Proceedings of International Conference on Soft Computing Models in Industrial and
Environmental Applications (SOCO 2021). 2022; pp. 717–727.

 29. Hochreiter S, Schmidhuber J. Long short‑term memory. Neural Comput. 1997; 9(8):1735–1780.
 30. Benavoli A, Corani G, Demsar J, Zaffalon M. Time for a change: a tutorial for comparing multiple classifiers through

Bayesian analysis. J Mach Learn Res. 2017; 18(77):2653–88.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	A new deep learning architecture with inductive bias balance for transformer oil temperature forecasting
	Abstract
	Introduction
	Related works
	Sparse approach
	Inductive bias approach

	Methods
	Hypothesis
	Nomenclature
	Embedding
	Smooth Residual Block

	Experimentation
	Datasets
	Experimental settings
	Evaluation metrics

	Results and discussion
	Efficacy and efficiency analysis
	Efficacy
	Efficiency

	Output analysis
	Statistical tests

	Conclusions and future works
	Acknowledgements
	References

