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Abstract 

Existing research in differential privacy, whose applications have exploded across func-
tional areas in the last few years, describes an intrinsic trade-off between the privacy 
of a dataset and its utility for analytics. Resolving this trade-off critically impacts 
potential applications of differential privacy to protect privacy in datasets even 
while enabling analytics using them. In contrast to the existing literature, this paper 
shows how differential privacy can be employed to precisely—not approximately—
retrieve the analytics on the original dataset. We examine, conceptually and empirically, 
the impact of noise addition on the quality of data analytics. We show that the accu-
racy of analytics following noise addition increases with the privacy budget 
and the variance of the independent variable. Also, the accuracy of analytics follow-
ing noise addition increases disproportionately with an increase in the privacy budget 
when the variance of the independent variable is greater. Using actual data to which 
we add Laplace noise, we provide evidence supporting these two predictions. We then 
demonstrate our central thesis that, once the privacy budget employed for differential 
privacy is declared and certain conditions for noise addition are satisfied, the slope 
parameters in the original dataset can be accurately retrieved using the estimates 
in the modified dataset of the variance of the independent variable and the slope 
parameter. Thus, differential privacy can enable robust privacy as well as precise data 
analytics.

Keywords:  Data analytics, Data mining, Data privacy, Differential privacy, DiD, 
Difference-in-difference, OLS, Ordinary least squares, Prediction, Regression

Introduction

“Information is the oil of the 21st century, and analytics is the combustion engine.”—
Peter Sondergaard, Senior Vice President and Global Head of Research at Gartner, 
Inc.

As the above quote highlights, data analysis and prediction have become the cornerstone 
of corporate and public policy. While powerful insights can be obtained when granular 
data—often about individuals—are shared for research, concerns about the privacy of 
such granular data limit society’s potential to put it to optimal use. Individuals’ privacy 
can get compromised even when their data is shared with the individual’s approval and 
is stripped of personal identifiers. Na et al. [1] Show how researchers could re-identify 
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95 percent of individual adults from the National Health and Nutrition Examination 
Survey using machine learning techniques; [2] similarly show a high re-identification 
rate of data. A prominent example is of Governor William Weld, the former Governor 
of Massachusetts, who was subjected to such re-identification using a linkage attack [3].

Differential privacy has emerged as a technique to ensure privacy of individuals in a 
dataset, even when their data is shared publicly [4]. As differential privacy changes the 
process for accessing data, rather than the database itself, it enables individuals’ privacy 
even when the data is subjected to various attacks on privacy. The use of differential pri-
vacy by the 2020 U.S. Census signals a seminal change in government statistics [5]. Lead-
ing corporations and governments have started employing differential privacy into their 
datasets; see [5–7].

In the last few years, there has been an explosion of research articles that apply dif-
ferential privacy to various functional areas such as healthcare [8–22], learning [23–38], 
location-based services [39–47], internet-based collaboration [48], Internet of Things 
[49–51], block-chains [52–54], cyber-physical systems [55–58], neural networks [59], 
social media and social network analysis [60–62], crowd-sourcing [63–65], and mobile 
edge computing environments [66, 67]. Pejó and Desfontaines [68] study the numerous 
variants and extensions to adapt differential privacy to different scenarios and attacker 
models.

Existing research in this area emphasizes an intrinsic trade-off between the privacy 
of a dataset and its utility for analytics. In their survey of the privacy literature, [69] 
describe this trade-off as “differential privacy provides either very little privacy or very 
little utility or neither.” In contrast to such existing literature, this paper shows that dif-
ferential privacy can be employed to precisely—not approximately—retrieve the asso-
ciations in the original dataset. As viable methods for protection of privacy that do not 
impinge on the quality of data analytics are cardinal to our increasingly data-reliant and 
privacy-conscious society, our study makes an important contribution by highlighting 
that differential privacy can enable privacy while simultaneously preserving the quality 
of data analytics as in the original data.

We examine, conceptually and empirically, the impact of noise addition using differ-
ential privacy on the quality of data analytics on a modified dataset, i.e. a dataset with 
noise. As associations between the dependent and independent variables are typically 
captured using the slope parameter in a regression, we examine the impact of noise addi-
tion on the slope parameter. We obtain two key results. First, the accuracy of analytics 
following noise addition increases with the privacy budget and the variance of the inde-
pendent variable. Second, the accuracy of analytics following noise addition increases 
disproportionately with an increase in the privacy budget when the variance of the inde-
pendent variable is greater. To test these two predictions, we use actual data, where both 
the dependent and explanatory variables are private. We add Laplace noise to both these 
variables and then compare the slopes in the original and modified datasets to provide 
evidence supporting these two predictions. We thus conceptually and empirically estab-
lish that the utility-privacy trade-off exists in differential privacy.

We then ask the central question in this study: Can this utility-privacy trade-off be 
overcome using differential privacy? We highlight that differential privacy can ensure 
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precise data analytics even while preserving the privacy of the individuals in a dataset, 
provided the noise added satisfies the following criteria. If the dependent variable and 
an explanatory variable are both private variables, three conditions must be satisfied. 
First, noise added to dependent variable is independent of the explanatory variable. 
Second, noise added to the explanatory variable is independent of the dependent vari-
able. Third, these noises are, in turn, independent of each other. Given these criteria, we 
show that once the privacy budget employed to construct a differentially private dataset 
is declared, the original slope parameter can be precisely retrieved using the variance of 
the independent variable and the slope parameter estimated using the modified data-
set. Critically, we demonstrate these results by being agnostic about the nature of the 
statistical distribution from which the noise is added to achieve differential privacy. As 
revealing the privacy budget used to arrive at the differentially private dataset does not 
necessarily compromise the privacy of the dataset, differential privacy can enable us to 
overcome the utility-privacy trade-off.

If only the dependent variable is private while the explanatory variable is a public vari-
able, noise needs to be added to only the dependent variable. In this case, if noise added 
to dependent variable is independent of the explanatory variable, the original slope 
parameter is identical to the estimate generated using the modified dataset; this result is 
again agnostic to the nature of the statistical distribution from which the noise is added 
to achieve differential privacy.

Our study makes an important contribution to the differential privacy literature. 
In their survey of the privacy literature, [69] classify differential privacy, k-anonymity, 
l-diversity and t-closeness as the techniques that employ input privacy for data mining. 
Outlining the advantage of differential privacy through the contributions of [10, 70, 69] 
highlight that “differential privacy is becoming a popular research area as it guarantees 
data privacy... (and) ensures utility as noise addition is minimal thus providing a close 
approximation of original results.” (emphasis added) However, outlining its disadvan-
tages, they write “differential privacy provides either very little privacy or very little util-
ity or neither.” A similar belief was expressed in [71], where they mention “It is believed 
that certain paradigms such as differential privacy reduce the information content too 
much to be useful in practical situations.” (pp. 322) In contrast, our study shows that by 
declaring the privacy budget used in generating a differentially private dataset, precise—
not approximate as claimed in [69]—data analytics can be performed using the modified 
dataset even while preserving its privacy.

Within the scope of the utility-privacy trade-off, our study contrasts: 

1.	 The claim in [69] that “differential privacy provides either very little privacy or very 
little utility or neither.” Our study shows that both privacy and utility can be obtained 
using differential privacy.

2.	 The thesis in [72] that techniques for privacy preservation have “a noticeable impact 
of privacy-preservation techniques in predictive performance.” Our study shows that 
differential privacy can ensure no noticeable impact of privacy-preservation tech-
niques in predictive performance.
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3.	 The concern raised in [5] with respect to the use of differential privacy by the 2020 
U.S. Census that “transition to differential privacy has raised a number of questions 
about the proper balance between privacy and accuracy in official statistics.” Our 
study shows that these concerns about the balance between privacy and accuracy—
with respect to analytics using the census data—may be misplaced.

Our study also contributes to the literature on privacy preserving data analytics. Zhang 
et al. [73] survey the literature on privacy preserving association rule mining, especially 
focusing on the present methodologies for the same. Ahluwalia et  al. [74] study asso-
ciation rule mining where mining is conducted by a third party over data located at a 
central location is updated from several source locations. We show that differential pri-
vacy can be used to completely preserve the utility of data analytics, while ensuring the 
privacy of data.

The paper is structured as follows. Section   analyzes the effects of noise addition on 
the accuracy of analytics. Section  postulates the key result in our study. Section  con-
cludes the paper.

Effect of noise addition using differential privacy on data analytics
Following [4, 75], ǫ-differential privacy is defined formally as follows. If ǫ is a positive 
real constant, A is a randomised process, D and D ′  are databases that differ by the data 
of one individual, and O is some output of the process A, then ǫ-differential privacy is 
defined as:

The smaller ǫ is, the closer the probabilities above are, and, therefore, the more differ-
entially private the process is. Conversely, a higher ǫ implies a less differentially private 
process.

Having defined ǫ-differential privacy, we now study the central thesis of this paper: the 
purported trade-off between utility and privacy of a differentially private dataset. As the 
correlations between dependent and independent variables—in univariate or multivari-
ate settings—are most important in data analytics, we study the effect of adding noise to 
enable differential privacy on the correlations as measured by the slope parameter in a 
regression.

We first consider the case where both the dependent variable y and the independent 
variable x are private.
Adding noise to private dependent and independent variables: conceptual analysis

Denote �(µ, σ) as a function that finds a random value from a distribution with mean 
µ and standard deviation σ . We use �′(µ, σ) to denote a random draw that is different 
from �(µ, σ) . We add noise from a distribution with σ = α

ǫ
 , where α is a constant and 

ǫ is the privacy parameter, to both dependent and independent variables in an ordinary 
least squares (OLS) regression.1 We get the following equation:

(1)[A(D) = O] ≤ eǫ · P[A(D′) = O]

1  α equals 
√
2 for a Laplace distribution for instance.
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where the estimate of β1 is given by:

where covar(x, y) denotes the covariance between random variables x and y and var(x) 
denotes the variance of random variable x. Similarly, after noise addition, the new slope 
parameter β ′

1
 equals:

The denominator equals

Now, as �(µ, α
ǫ
) is independent of x, the covariance between them equals 0 while vari-

ance of �(µ, α
ǫ
) equals α

2

ǫ2
 . Therefore, the denominator simplifies as:

The numerator equals

We use the fact that �(µ, α
ǫ
) and �′(µ, α

ǫ
) are independent of each other, y is independ-

ent of �(µ, α
ǫ
) , and x is independent of �′(µ, α

ǫ
) . So, except the first covariance, the other 

three covariances are zero. So, the numerator simplifies as:

Using the simplified numerator and denominator, we get

Using Eqs. (3) and (8) and denoting var(x) as σ 2
x :

Clearly, β ′
1
< β1 , which leads to the following result:
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Result 1  If the dependent variable y and an explanatory variable x are both private vari-
ables, then the slope parameter used in data analytics is lower in magnitude after noise 
addition when compared to the slope parameter in the original dataset.

Figure 1 shows how the ratio β
′
1

β1
 varies with the variance of x over different values for ǫ.

In Fig. 1 and in (9), we notice that, for a given value of ǫ , as the variance in x increases, 
β ′
1
 approaches β1 . Similarly, for a given value of σ 2

x  , β ′
1
 approaches β1 as ǫ increases. Thus, 

we get the following two results:

Result 2A  If the dependent variable y and an explanatory variable x are both pri-
vate variables, then the accuracy of analytics following noise addition increases with 
increases in the privacy budget ( ǫ ) and in the variance of the independent variable ( σ 2

x ).

Result 3A  If the dependent variable y and an explanatory variable x are both private 
variables, then the accuracy of analytics following noise addition increases dispropor-
tionately with increase in privacy budget ( ǫ ) when the variance of the independent vari-
able ( σ 2

x  ) increases:

Adding noise to private dependent and independent variables: empirical evidence

In this section, we analyze the effect of noise addition to satisfy differential privacy to 
private dependent and independent variables on the accuracy of data analytics. We 
focus on two popular techniques used for analysis of data: ordinary least squares (OLS) 
regression and difference-in-difference estimation using panel data techniques ([76], 
Ch. 5, [77]). The estimate of the slope parameter in a difference-in-difference analysis 

(10)
d(β ′

1
/β1)

dǫ
> 0,

d(β ′
1
/β1)

d(σ 2
x )

> 0.

(11)
d2(β ′

1
/β1)

dǫ · d(σ 2
x )

> 0.

Fig. 1  Change in accuracy of analytics following noise addition
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resembles the discrete equivalent of a second-order derivative of the dependent variable 
w.r.t. the independent variable. Therefore, the variance of the independent variable in 
a difference-in-difference analysis is significantly greater than the variance of the inde-
pendent variable in an OLS analysis. Thus, the simultaneous use of OLS and difference-
in-difference estimation on the same dataset enables us to proxy the changes in the 
variance of the independent variable. In contrast, using two different datasets to proxy 
the changes in the variance of the independent variable would introduce other differ-
ences that may confound the empirical analysis. Thus, in our empirical analysis, the OLS 
estimates proxy the dataset with a lower variance for the independent variable while the 
difference-in-difference estimates proxy the dataset with a higher variance for the same.

We add noise from a Laplace distribution to a real dataset containing data on vaccina-
tion and health outcomes across all the states in the United States. The data on health 
outcomes—which includes the total number of cases per million people, the total num-
ber of deaths per million people, and the percentage case fatality rate—is collected from 
Oxford University’s COVID-19 Government Response Tracker. The data on vaccina-
tion is collected from ourworldindata.org. The time period of the data is from Jan-2021, 
when vaccination first began in the U.S. to Apr-2021, when we had collected the data. 
We add noise to this data using nine different values of epsilon: 0.25, 0.5, 1, 2, 3, 4, 5, 6, 
and 7.

In both analyses, OLS and difference-in-difference, we compare the slope parameter 
we obtain on the noisy dataset ( β ′

1
 ) with the results obtained on the original dataset ( β1 ). 

We do this comparison for each value of epsilon to find the most accurate epsilon, the 
one with the least difference in the slope parameters vis-à-vis the original. We repeat 
this 100 times and aggregate the results to find the most accurate epsilon value. For each 
epsilon value, we also find the average of the squared difference in the slope parameters 
( β ′

1
 and β1 ) over the 100 repetitions to find the effects of noise addition.

The results of our analysis are shown in Figs. 2 and 3, which display a bar chart with 
the number of times each epsilon value was most accurate for OLS and difference-in-dif-
ference respectively. These figures confirm our theoretical prediction in Result 2A that 

Fig. 2  Most accurate ǫ for OLS regression
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Fig. 3  Most accurate ǫ for difference-in-difference estimates

Fig. 4  Accuracy of analytics using ols regression for varying ǫ

Fig. 5  Accuracy of Analytics using Difference-in-difference Estimates for Varying ǫ
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an increase in the value of ǫ increases the accuracy of data analytics. Thus, we state the 
following result from our empirical analysis:

Result 2B  As theoretically predicted in Result 2A, the empirical analysis using actual 
data confirms that the accuracy of analytics following noise addition increases with 
increase in the value of ǫ.

Figures 4 and 5 display a bar chart with the average sum of squares error in the slope 
parameters for the OLS and difference-in-difference respectively for each value of 
epsilon. We observe that the average difference over 100 iterations between the result 
obtained using the noisy dataset and the original dataset monotonically decreases with 
an increase in epsilon. This result is consistent with what we found using the earlier 
Figs. 2 and 3 charts that displayed the most accurate epsilon.

Table  1 displays the exact values for the average squares of differences between the 
slope parameters. We observe that as the value of epsilon rises, the average squares of 
differences falls monotonically—by approximately 6 times for ordinary least squares and 
approximately 200 times for difference-in-difference. Thus, there is a disproportionately 
larger drop in the average differences for the difference-in-difference estimate when 
compared to the estimates obtained using the ordinary least squares. is consistent with 
that of the theoretical analysis. Result 3A predicts that as the variance of the independ-
ent variable increases, an increase in ǫ disproportionately increases the accuracy. There-
fore, we find that the empirical evidence when comparing the change in accuracy with ǫ 
for the difference-in-difference analysis versus that for the ordinary least squares analy-
sis is consistent with Result 3A:

Result 3B  As theoretically predicted in Result 3A, the effect of an increase in the value 
of ǫ is disproportionately more in a difference-in-difference analysis than in an ordinary 
least squares regression.

Thus, the empirical analysis clearly confirms that as the privacy budget ( ǫ ) increases, 
the utility of the data analytics—as measured by the slope parameter capturing the asso-
ciation between the dependent and independent variables—declines. On the other hand, 
the definition of differential privacy as in equation (1) shows clearly that as the privacy 
budget ( ǫ ) decreases, the data becomes more private. Thus, our conceptual and empiri-
cal analysis clearly demonstrates the intrinsic trade-off between privacy and utility when 
employing differential privacy. This trade-off has been described in [69], who outline 

Table 1  Average square of differences in slope parameter in original dataset and in dataset with 
noise addition using ordinary least squares (OLS) and difference-in-difference (DiD)

ǫ OLS DiD ε OLS DiD

0.25 3.3 79.9 4 2.0 4.7

0.5 3.2 66.9 5 1.5 2.2

1 3.1 49.3 6 0.9 0.9

2 2.8 24.3 7 0.6 0.4

3 2.5 11.6
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the disadvantages of differential privacy when they note that “differential privacy pro-
vides either very little privacy or very little utility or neither.” Similarly, [72] highlight that 
techniques for privacy preservation have “a noticeable impact of privacy-preservation 
techniques in predictive performance.”

Adding noise to only private dependent variable: conceptual analysis

Having analysed the case where both the dependent and independent variables are pri-
vate, we now examine the impact on data analytics in the case where the independent 
variable is a public variable and so there is no need to add noise to the same to preserve 
privacy. As the case where the dependent variable is a public variable is not interesting 
from the perspective of data analysis, we ignore that case; we note, however, from the 
formula for the slope parameter in Eq. (3) that when no noise is added to the depend-
ent variable, the slope parameter remains unchanged. In this case, we get the following 
equation:

After noise addition, the new slope parameter β ′
1
 equals:

Replicating the steps as shown in section , we find that

Therefore, in the case where the independent variable is a public variable,

This leads to our next result:

Result 4  When the independent variable is a public variable, the slope parameter 
remains unchanged after noise addition.

Key advantage of differential privacy for data analytics: precise analytics 
without losing privacy
Having conceptually and empirically demonstrated the trade-off between utility of dif-
ferential privacy for data analytics and its ability to preserve privacy, we ask the central 
question in this study: Can this trade-off be avoided? As the slope parameter remains 
unchanged in the case where the independent variable is a public variable, we focus only 
on the case where both the dependent and independent variables are private. In this 
case, we highlight that differential privacy ensures the precision of data analytics even 
while preserving the privacy of the individuals in a dataset.

(12)
[

yi +�′
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α

ǫ

)]

= β0 + β1 · xi + νi,

(13)β ′
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cov
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x, y+�′
(
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Combining Eqs. (6) and (9), the slope parameter in the original dataset can be regen-
erated from the slope parameter in the modified dataset using the variance of the inde-
pendent variable in the modified dataset σ 2

x′ and the privacy budget ǫ as follows:

Thus, given the level of differential privacy employed in the modified dataset, i.e. with 
noise addition, the original slope parameter can be accurately retrieved using the vari-
ance calculated for the independent variable in the modified dataset σ 2

x′ and the slope 
parameter estimated in the modified dataset β ′

1
 provided the following criteria are satis-

fied. If the dependent variable and an explanatory variable are both private variables, 
three conditions must be satisfied. First, noise added to dependent variable is independ-
ent of the explanatory variable. Second, noise added to the explanatory variable is inde-
pendent of the dependent variable. Third, these noises are, in turn, independent of each 
other. If only the dependent variable is private while the explanatory variable is a public 
variable, only one condition must be satisfied: noise added to dependent variable is inde-
pendent of the explanatory variable.

Thus, in contrast to this prevailing wisdom on the disadvantage of differential privacy, 
our study shows that by declaring the privacy budget used in generating a differentially 
private dataset, the slope parameters in the original dataset can be retrieved precisely. 
Thus, our paper is the first to show that differential privacy provides a precise replica-
tion (not approximation as claimed in [69]) of the relationships between variables even 
while preserving the privacy of the dataset. Our study also contrasts the claim in [69] that 
“differential privacy provides either very little privacy or very little utility or neither”, the 
thesis in [72] that techniques for privacy preservation have “a noticeable impact of pri-
vacy-preservation techniques in predictive performance”, and the concerns raised in [5] 
with respect to the use of differential privacy by the 2020 U.S. Census that “transition to 
differential privacy has raised a number of questions about the proper balance between 
privacy and accuracy in official statistics.”

Conclusion and future directions
Advances in computing power have enabled unparalleled opportunity for obtaining 
insights using granular data, especially those on individuals, to guide corporate and 
public policy. This trend is also accompanied by the increasing importance that soci-
ety places on individuals’ privacy, thereby creating an intrinsic trade-off between the 
utility of datasets and privacy of individuals that comprise such data. Existing litera-
ture highlights this trade-off even for one of the newest concept in privacy—differen-
tial privacy. In contrast to such existing literature, our study shows that differential 
privacy can be employed to precisely—not approximately—retrieve the associations in 
the original dataset provided the noise addition satisfies certain criteria.

Given the promise of differential privacy in preserving the privacy of individuals’ 
data, a follow up to our study could be to study the techniques through which noise 
can be added to satisfy differential privacy as well as the criteria that are outlined in 
this study, especially adding noise that is purely random. Another important follow up 

(15)β1 = β ′
1

{

ǫ2σ 2
x′

ǫ2σ 2
x′ − α2

}
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study would be to analyze whether the results that we have demonstrated for analysis 
using ordinary least squares (OLS) regression extend to other analytical techniques, 
such as those using artificial intelligence and machine learning.
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