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Abstract

The paper discusses the shift in the computing paradigm and the programming
model for Big Data problems and applications. We compare DataFlow and
ControlFlow programming models through their quantity and quality aspects. Big
Data problems and applications that are suitable for implementation on DataFlow
computers should not be measured using the same measures as ControlFlow
computers. We propose a new methodology for benchmarking, which takes into
account not only the execution time, but also the power and space, needed to
complete the task. Recent research shows that if the TOP500 ranking was based on
the new performance measures, DataFlow machines would outperform ControlFlow
machines. To support the above claims, we present eight recent implementations
of various algorithms using the DataFlow paradigm, which show considerable
speed-ups, power reductions and space savings over their implementation using
the ControlFlow paradigm.
Introduction
Big Data is becoming a reality in more and more research areas every year. Also, Big

Data applications are becoming more visible as they are slowly entering areas concern-

ing the general public. In other words, Big Data applications that were up to now

present mainly in the highly specialized areas of research, like geophysics [1,2] and

financial engineering [3], are making its way into more general areas, like medicine

and pharmacy [4], biology, aviation [5], politics, acoustics [6], etc.

In the last years the ratio of data volume increase is higher than the ratio of process-

ing power increase. With the growing adoption of data-collecting technologies, like

sensor networks, Internet of Things, and others, the data volume growth ratio is

expected to continue to increase.

Among others, one important question arises: how do we process such quantities of

data. One possible answer lies is in the shift of the computing paradigm and the

programming model. With Big Data problems, it is many times more reasonable to

concentrate on data rather than on the process. This can be achieved by employing

DataFlow computing paradigm, programming model, and computers.
Background and literature review
The strength of DataFlow, compared to ControlFlow computers is in the fact that they

accelerate the data flows and application loops from 10× to 1000×. How many orders
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of magnitude depends on the amount of data reusability within the loops. This feature

is enabled by compiling down to levels much below the machine code, which brings

important additional effects: much lower execution time, equipment size, and power

dissipation.

The above strengths can prove especially important in Big Data applications that can

benefit from one or more of the DataFlow advantages. For instance:

– A daily periodic Big Data application, which would not finish in time, if executed

on a ControlFlow computer, executes in time on a DataFlow computer of the same

equipment size and power dissipation,

– A Big Data application with limited space and/or power resources (remote locations

such as ships, research stations, etc.) executes in a reasonable amount of time,

– With Big Data applications, where execution time is not a prime concern, DataFlow

computers can save space and energy.

The previous paper [7] argues that time has come to redefine TOP500 benchmarking.

Concrete measurement data from real applications in geophysics [1,2], financial engin-

eering [3], and some other research fields [8,9,10-12], shows that a DataFlow machine

(for example, the Maxeler MAX series) rates better than a ControlFlow machine (for

example, Cray Titan), if a different benchmark is used (e.g., a Big Data benchmark), as

well as a different ranking methodology (e.g., the benchmark execution time multiplied

by the number of 1U boxes needed to accomplish the given execution time - 1U box

represents one rack unit or equivalent - it is assumed, no matter what technology is

inside, the 1U box always has the same size and always uses the same power).

In reaction to the previous paper [7], scientific community insists that more light is

shed on two issues: (a) Programming paradigm and (b) Benchmarking methodology.

Consequently the stress of this viewpoint is on these two issues.

Discussion
What is the fastest, the least complex, and the least power consuming way to do

(Big Data) computing?

Answer: Rather than writing one program to control the flow of data through the

computer, one has to write a program to configure the hardware of the computer, so

that input data, when it arrives, can flow through the computer hardware in only one

way - the way how the computer hardware has been configured. This is best achieved if

the serial part of the application (the transactions) continues to run on the ControlFlow

host and the parallel part of the application is migrated into a DataFlow accelerator. A

DataFlow part of the application does (parallel) Big Data crunching and execution of

loops.

The early works of Dennis [13] and Arvind [14] could prove the concept, but could

not result in commercial successes for three reasons: (a) Reconfigurable hardware tech-

nology was not yet ready. Contemporary ASIC was fast enough but not reconfigurable,

while reconfigurable FPGA was nonexistent; (b) System software technology was not

yet ready. Methodologies for fast creation of system software did exist, but effective

tools for large scale efforts of this sort did not; and (c) Applications of those days were

not of the Big Data type, so the streaming capabilities of the DataFlow computing
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model could not generate performance superiority. Recent measurements show, that,

currently, Maxeler can move internally over 1 TB of data per second [15].

Programming model

Each programming model is characterized with its quantity and quality. The quantity and

quality aspects of the Maxeler DataFlow model, as one of the currently best evaluated, are

explained in the next two paragraphs, based on Figure 1. Other DataFlow programming

initiatives exist [16] that follow similar approaches as Maxeler systems. To the best of our

knowledge Maxeler is the leading player on the field and employs the most advanced and

flexible model. For that reason we are using the Maxeler system platform for the presenta-

tion of the DataFlow programming model (one of many possible).

Quantitatively speaking, the complexity of DataFlow programming, in the case of

Maxeler, is equal to 2n + 3, where n refers to the number of loops migrated from the

ControlFlow host to the DataFlow accelerator. This means, the following programs

have to be written:

– One kernel program per loop, to map the loop onto the DataFlow hardware;

– One kernel test program per loop, to test the above;

– One manager program (no matter how many kernels there are) to move data:
Figu
cod
sele
varia
to in
(1) Into the DataFlow accelerator,

(2) In between the kernels (if more than one kernel exists), and
(a) (b) (c)
re 1 An example of the Maxeler DataFlow programming model: (a) Host code, (b) Manager
e, and (c) Kernel code (a single kernel case): 2D convolution. Legend: SLiC = Compiler support for
cted domain specific languages and customer applications. DFEvar = keyword used for defining the
bles that internally flow through the configured hardware (in contrast to standard Java variables used
struct the compiler). FIFO = First In First Out.
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(3) Out of the DataFlow accelerator;

– One simulation builder program, to test code without the time consuming

migration into the binary level;

– One hardware builder program, to exploit the code on the binary level.

In addition, in the host program (initially written in Fortran, Hadoop, MapReduce,

MathLab, Matematika, C++, or C), instead of each migrated loop, one has to include a

streaming construct (send data + receive results), represented by automatically gener-

ated C function Calc(x, DATA_SIZE, see Figure 1 (a).

Qualitatively speaking, the above quantity (2n + 3) is not any more difficult to realize

because of the existence of a DSL (domain specific language) like MaxJ (an extension

of standard Java with over 100 new functionalities). Figure 2 shows how a complex Big

Data processing problem can be realized in MaxJ code. Note that the programming

model implies the need for existence of two types of variables: (a) Standard Java

variables, to control compile time activities, and (b) DFE (DataFlow Engine) variables,

which actually flow through configured hardware (denoted with the DFE prefix in the

examples of figures 1 and 2). The programming of the DataFlow part of the code is

largely facilitated through the use of appropriate Java extensions.

Research design and methodology

Bare speed is definitely neither the only issue of importance nor the most crucial one

[17]. Consequently, the TOP500 ranking should not concentrate on only one issue of

importance, no matter if it is speed, power dissipation, or size (the size includes hard-

ware complexity in the widest sense); it should concentrate on all three issues together,

at the same time.

In this paper we argue that the best methodology for TOP500 benchmarking should

be based on the holistic performance measure H (TBigData, N1U) defined as the number

of 1U boxes (N1U = one rack units or equivalent) needed to accomplish the desired

execution time using a given Big Data benchmark. Instead of using theoretical mea-

sures of size and volume, we have opted in this paper for a more practical measure,

which is related to international standardization efforts: The size of a 1U box. Issues

like power dissipation (monthly electricity bill), and the physical size of the equipment
Figure 2 An example of the Host and Kernel code.
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(the assumption here is that the equipment size is proportional to the hardware

complexity, and to the hardware production cost) are implicitly covered by H (TBigData,

N1U) (every 1U box has limited power dissipation and size). Selection of the perform-

ance measure H is coherent with the TPA concept introduced in [18] and described in

Figure 3.

Note that the hardware design cost is not encompassed by the parameter A, which

encompasses only the hardware production cost, and causes that the above defined H

formula represents an upper bound for ControlFlow machines and a lower bound for

DataFlow machines. This is due to the fact that ControlFlow machines are built using

the Von Neumann logic, which is complex to design (execution control unit, cash con-

trol mechanism, prediction mechanisms, etc.), while the DataFlow machines are built

using the FPGA logic, which is simple to design; mostly because the level of design re-

petitiveness is extremely high, etc. The latter is beneficiary for many Big Data problems,

where a large amount of data is continuously processed through the use of relatively

simple operations.

As indicated in the previous paper [7], the performance measure H puts PetaFlops

out of date, and brings PetaData into the focus. Consequently, if the TOP500 ranking

was based on the performance measure H, DataFlow machines would outperform

ControlFlow machines. This statement is backed up with performance data presented in

the next section.

Results
A survey of recent implementations of various algorithms using the DataFlow paradigm

can be found in [19]. Future trends in the development of the DataFlow paradigm can

be found in [20]. For comparison purposes, future trends in the ControlFlow paradigm

can be found in [21].
Figure 3 The TPA (Time, Power, and Area) concept of the optimal computer design. Design
optimizations have to optimize the three essential issues jointly: T = Time, P = Power, and A = Area
(complexity of a VLSI chip).
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Some of recent implementations of various DataFlow algorithms interesting within

the context of the performance measure H are summarized below.

(1) Lindtjorn et al. [1], proved: (T) That one DataFlow node has the performance

equivalent to about 70 twin server Nehelem CPU machines and to 14 two card

Tesla GPU machines (application: Schlumberger, GeoPhysics), (P) Using a

150 MHz FPGAs, and (A) Packaged as 1U.
The algorithm involved was Reverse Time Migration (RTM).

Starting from Acoustic wave equation:
∂2u
∂t2

¼ v2
∂2u
∂x2

þ ∂2u
∂y2

þ ∂2u
∂z2

� �

where u is acoustic pressure and v is velocity.
(2) Oriato et al. [2], proved: (T) That two DataFlow nodes have the performance

equivalent to more than 1,900 3 GHz X86 CPU cores (application: ENI, The

velocity-stress form of the elastic wave equation), (P) Using sixteen 150 MHz

FPGAs, and (A) Packaged as 2U.

The algorithm involved (3D Finite Difference) was:
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where λ and μ are the so-called Lamé parameters describing the elastic properties
of the medium, σ is the stress and f is the source function (driving force).

(3) Mencer et al. [8] proved: (T) That one DataFlow node has the performance

equivalent to more than 382 Intel Xeon 2.7 GHz CPU cores (application: ENI, CRS

4 Lab, Meteorological Modelling), (P) Using a 150 MHz FPGAs, and (A) Packaged

as 1U.

The algorithm involved (Continuity (1) and (2) and thermal energy (3) equations)

was:

∂ps
∂t

¼
Z1

0

∇⋅ Vh
→ ∂p

∂σ

� �
dσ ð1Þ

∂q
∂t

¼ −
u
ahx

∂q
∂λ

v
a

∂q
∂φ

−σ
∂q
∂σ

þ Fq ð2Þ

∂θ

∂t
¼ −

u
ahx

∂θ

∂φ
−σ

∂θ

∂σ
þ Fθ ð3Þ
Where Vh
!

is the horizontal wind in vector form, for which Cartesian components

are u and v, terms Fu, Fv, Fq and Fθ represent contributions to the tendencies from

the parameterization of physical processes such as radiation, convection, dry

adiabatic adjustments, surface friction, soil water and energy balance, large scale
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precipitation and evaporation. The PE describes the time evolution for the five

prognostic variables u, v, ps, q and θ.

(4) Stojanović et al. [9] proved: (T) That one DataFlow node has the performance of

about 10 i7 CPU cores, (P) Power reduction of about 17, and (A) Packaged as 1U.

The algorithm involved (Gross Pitaevskii equation) was:

ih
∂

∂t
Φ r; tð Þ ¼ −

h2∇2

2m
þ V ext rð Þ þ g Φ r; tð Þj j2

� �
Φ r; tð Þ

where m is the mass of the boson, r is the coordinate of the boson, Vext is the
external potential, g is coupling constant and Φ is wave function.

(5) Chow et al. [3] proved: (T) That one DataFlow node has the performance of about

163 quad core CPUs, (P) Power reduction of about 170, and (A) Packaged as 1U.

The algorithm involved (Monte Carlo simulation) was:

I≈ f Hh iN ¼ 1
N

XN
i¼1

χ i
!� �

where →xi is the input vector, N is the number of sample points, I is approximated
expected value, and ⟨fH⟩N is the sampled mean value of the quantity.

(6) Arram et al. [10] proved: (T) That one DataFlow node has the performance of

about 13 Intel X5650 20 core CPUs and about 4 NVDIA GTX 580 GPU machine,

(P) Using one 150 MHz FPGAs, and (A) Packaged as 1U.

The algorithm involved (Genetic Sequence Alignment) was based on FM-index.

This index combines the properties of suffix array (SA) with the Burrows-Wheeler

transform (BWT).

SA interval is updated for each character in pattern Q, moving from the last

character to the first:

knew ¼ c χð Þ þ s χ; kcurrent−1ð Þ

lnew ¼ c χð Þ þ s χ; lcurrent−1ð Þ
where pointers k and l are respectively the smallest and largest indices in the SA
which starts with Q, c(x) (frequency) is the number of symbols in the BWT

sequence that are lexicographically smaller than x and s(x, i) (occurrence) is the

number of occurrences of the symbol x in the BWT sequence from the 0th

position to the ith position.

(7) Guo et al. [11] proved: (T) That one DataFlow node has the performance of about

517 Intel i3 2.93 GHz CPU cores and of about 28 GPU machines, (P) Using one

150 MHz FPGA, and (A) Packaged as 1U.

The algorithm involved (Gaussian Mixture Models) was:

p Xjλð Þ ¼
XM
i¼1

wi g Xjμi;
X

i

� �
where x is a d-dimensional continuous-valued data vector (i.e. measurement or

features), wi, i = 1, …, M, are the mixture weights, and g(x|ěi, Ói), i = 1, …, M, are

the component Gaussian densities.
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(8) Kos et al. [12] proved: (T) That one DataFlow node has the performance of

between 100 and 400 Intel Core2 Quad 2.66 GHz CPU cores, (P) using one

200 MHz FPGA, and (A) Packaged as 1U.

The algorithm involved was network sorting. An example of the simple sorting

network is given in the Figure 4.

Size of the sorting network, the number of comparators needed, to sort N numbers

is:

S ¼ N⋅ log2N⋅ log2N þ 1ð Þ

The achieved speed-up depended on N and the bit-size of numbers being sorted
Fig
com
low
wor
(between 8 and 64 bits).
Conclusion
The viewpoint presented in this paper sheds more light on the recent development of the

DataFlow computing concept (more details can be found in [20-22]). The DataFlow com-

puting paradigm requires new ways of thinking and new ways of programming. In general

it redefines the subordination of program and data; instead of writing a program that con-

trols how the data flows, the data flow defines the way a program is written.

DataFlow computing excells with applications which are having high repetettivenes of

operation and some level of data reusability within the operations. The latter is particu-

larly beneficiarry for many BigData problems, where a large amount of data is repete-

tively processed through the use of relatively simple operations.

The newly presented benchmarking methodology performance measure H (defined

as the number of 1U boxes needed to accomplish the desired execution time using a

given Big Data benchmark), would considerably reorder the TOP500 list. If the

TOP500 ranking was based on the performance measure H, DataFlow machines would

outperform ControlFlow machines. This statement is backed up with the presented

performance results. The results show that when using DataFlow computers, instead

od ControlFlow computers, time, energy, and/or space can be saved.

The above can be of great interest to those who have to make decisions about future

developments of their Big Data centers. It also opens up a new important problem: The

need for a development of a public cloud of ready-to-use Big Data applications.

The only remaining question is: can a Big Data application be broken in to a set of

tasks and operations that are easily mappable into a DataFlow execution graph for a

FPGA structure? We argue that for most Big Data applications the answer is positive!
ure 4 An example of a simple sorting network for sorting four input values with five
parators. Each comparator connects two wires and emits higher value to the bottom wire and
er value to the top wire. Two comparators on the left and two comparators in the middle can
k in parallel. Parallel operation of this sorting network sorts the input numbers in three steps.
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Comment

This paper was prepared in response to over 100 e-mail messages with questions from

the CACM readership inspired by our previous CACM contribution [7].
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