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Abstract
Person Re-identification (ReID) is the process of matching target individuals to their images within different images or videos captured from a variety of angles or cameras. This is a critical task for surveillance applications, in particular, these applications that operate in large environments such as malls and airports. Recent studies use data-driven approaches to tackle this problem. This work continues on this path by presenting a modification of a previously defined loss, the centroid triplet loss ( CTL). The proposed loss, modified centroid triplet loss (MCTL), emphasizes more on the interclass distance. It is divided into two parts, one penalizes for interclass distance and second penalizes for intraclass distance. Mean Average Precision (mAP) was adopted to validate our approach, two datasets are also used for validation; Market-1501 and DukeMTMC. The results were calculated for first rank of identification and mAP. For dataset Market-1501 dataset, the results were [image: $$98.4\%$$] rank1, [image: $$98.63\%$$] mAP, and [image: $$96.8\%$$] rank1, [image: $$97.3\%$$] mAP on DukeMTMC dataset, the results outweighed those of existing studies in the domain.
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Introduction
With the advent of technology and the increasing usage of cameras, the topic of re-identification has gained greater attention. It has many surveillance applications, such as detecting criminals, tracking individuals, and activity analysis [17, 30, 37]. The problem is summarized as the recognition of a target person through a variety of images captured at different times or with different cameras. This makes ReID complex problem due to its intraclass variations, and the fact that images can be taken in different conditions, different poses of the target person, or even different angles. Moreover, the target person may be partially visible due to being obscured by another item, such as another person.
While researchers used a variety of techniques to achieve this goal, the main concept is the same: to learn a person’s discriminative features that aid in the matching process. Previously, this was accomplished manually by extracting and selecting features [1, 12, 39, 45]. However, with the advancement of deep learning model such as Convolution Neural Network (CNN), researchers moved their focus to deep learning techniques, in which models automatically learn pedestrian features. Yi et al in [36] proposed a Siamese neural network that can learn the similarity between features directly from images, while Li et al in [15] presented a filter pairing neural network (FPNN) that handles the misalignment automatically. In comparison to prior methodologies, neural networks significantly improved the performance in this domain.
Recently, many deep learning methods have been proposed in this domain. Some works presented new loss functions [2, 11, 16, 38]. Others use an external source of information, for example pose estimation, to improve model performance [8, 19]. Generative Adversarial Networks (GANs) have also been used in ReID, they were mainly used to augment existing datasets with more images as they are captured from cameras [13, 33, 43]. Other works use re-ranking methods, which are post-processing techniques. For example, Zhong et al in [45] used a k-reciprocal encoding to encode an image using its k-reciprocal nearest neighbors, which is then used for re-ranking by the Jaccard distance.
Luo et al in [18] focused on developing a strong base model for ReID tasks. They used ResNet as features extractor and introduced novel neck structure named as batch normalization neck BNNeck with various training tricks to improve the model performance. Wieczorek et al in [35] proposed a modification to the retrieval method; they implemented retrieval using the centroid representations of identities, which saves memory and significantly reduces the amount of the required computation. Additionally, they introduced centroid triplet loss, which is a modification of triplet loss where negative and positive samples are replaced with clusters’ centroids. They were able to achieve state-of-the-art results on different retrieval datasets.
In this paper, modified centroid triplet loss (MCTL) is proposed. The loss is broken into two terms. The first term is equivalent to the center loss and focuses on the intra-distance. The second term focuses on the inter-class to increase the margin between classes which makes it easier for the model to separate classes from each other. Using the described modification above, new results were achieved on both DukeMTMC-reID [22] and Market-1501 [41].
In market-1501 dataset for example, the gallery consists of 19,732 images, each [image: $$128 * 64 * 3$$] pixels in size, this equates to 484 million data. As a result, ReID is a big data problem, and processing this volume of data using conventional approaches is challenging. While the use of centroids as the representations of identities resulted in a decrease in space and time, the necessity remains enormous and requires special attention.

Background and related work
In [20], Ming et al. grouped deep learning-based person ReID methods into four categories. These categories are: 1. depth metric learning, 2. local feature learning, 3. generative adversarial learning, and 4. sequences feature learning. The last category is for video-based ReID, so it will not be discussed in this paper.
Deep metric learning
In deep metric learning, different cost functions are introduced to help the network learn more robust features, and increase its generation ability in the presence of large environment variations. For instance, center loss was first introduced in [34]. It penalizes the intra-class distance and seeks compact clusters representations. Triplet loss helps the network to output close features for images of the same identities while driving away images’ features of different classes [14, 23, 31]. Another loss is classification loss, which helps the network to classify images, instead of measuring their similarities [42]. For example, although center loss reduces the intra-class distance, it doesn’t consider inter-class distance, thus a trivial solution would be to output zero features for all images which achieve zero loss. It won’t be difficult for the network to find this trivial solution. Therefore, recent studies use combinations of them [18, 35].

Feature learning
Feature learning can be subdivided into global and local features learning. This is based on how the network represents the image, with either a single global feature vector for the whole image or with many vectors taken from different parts of the image. In works based on global features (this work included), the network converts the whole image into one single embedding vector. This is done through a base network which is commonly an ImageNet pre-trained network, in this case, ResNet50. However, although this approach is more computation friendly, it is difficult for this method to capture the detailed information about the pedestrian [20].
On the other hand, methodologies for extracting local features are various. They can also be classified into subcategories [20]. Sun et al. [27] proposed a Part-based Convolutional Baseline (PCB). They divided the image into parts and aligned them using content consistency inside each part, rather than relying on external sources such as the pose estimator. Many subsequent works, such as multiple granularity network (MGN) [29] and spatial-channel parallelism network (SCPNet) [4] were inspired by PCB. Other researchers accessed local information via the attention mechanism. Sharma et al. [24] presented the Locally Aware Transformer (LA-Transformer), which employs a PCB-like strategy to combine the globally enhanced local tokens while keeping their ordering in correspondence with the image dimension. Other models make use of external data. For example, Song et al. [26] introduced a mask-guided contrastive attention model (MGCAM). They used a binary mask to learn features separately from the body and background regions. He et al. used both pose-guided and mask-guided approach to build a saliency heat-map to aid in the learning of stronger discriminative features [10].

Generative adversarial learning (GANs)
GANs were first introduced in 2014 by Goodfellow et al. [7]. They have been established as a prominent player in the domain of deep learning. Regarding ReID, GANs are used in data generation to increase existing datasets. For instance, Zheng et al. [43] used DCGAN to create unlabeled samples that were then combined with annotated real images to train the model semi-supervised. Zhao et al. [40] proposed an adversarial network for Hard Triplet Generation (HTG). GANs are also used to transfer styles between datasets or even cameras. For example, Zhong et al. [46] introduced camera style(CamStyle) to solve the problem of camera style disparities within the same dataset. Additionally, GANs are used to learn resolution invariant features of pedestrian images. For instance, Chen et al. [3] proposed Resolution Adaptation and re-Identification Network (RAIN) that can learn resolution-invariant representations for re-ID in an end-to-end manner. Wang et al. [32] used a cascaded super-resolution GAN (CSR-GAN) to tackle the resolution mismatch problem.
All the studies in the domain of ReID are concerned with improving the results depending on ways that are not related to optimizer loss function. Even though updating the loss function to a new one might be complex, this will effectively improve the ReID problem and which was the target; to work on new ways of improvement such as loss function.


Objective of the paper
In general, loss function measures the difference between predicted output and actual output label. This difference is also known as training loss. It is a crucial metric that guides the optimization algorithm to adjust model weights and biases to minimize the training loss. The choice of the loss function depends on the nature of the problem to be solved (in this article, problem is ReID). For instance, regression problems require different loss functions, such as mean squared error, mean absolute error, or Huber loss, to estimate how well the model predicts a continuous value. In contrast, classification problems demand cross-entropy loss, hinge loss, or focal loss to calculate the performance of the model in predicting classes. Thus, selecting an appropriate loss function can ensure that the model trains effectively and converges to a robust solution for the given problem. In summary, the loss function is crucial for accurate training and optimization of deep learning models.
This study aims to improve the global feature baseline by introducing a loss function that takes into account both inter- and intra-class distances, which yields encouraging experimental results. Additionally, the introduced loss is applicable to problems involving general classification. The global feature approach is used because it is more efficient in terms of computation and storage than alternative methods.

Proposed method
Modified centroid triplet loss
Triplet loss aims to increase the similarity between images’ features that belong to the same class while decreasing similarity to features of images from different classes. It compares a reference image (referred to as the anchor) to a positive image (an image belonging to the same class) and a negative image (an image from a different class). The distance between the anchor and positive image is minimized because they are from the same class with high similarity while maximizing the distance between the anchor image and the negative image. The loss function is described by the following formula:[image: $$\begin{aligned} {L_{triplet}} = {\left\lfloor {d\left( {f\left( A \right) ,f\left( P \right) } \right) - d\left( {f\left( A \right) ,f\left( N \right) } \right) + m} \right\rfloor _ + } \end{aligned}$$]

 (1)


Where d is a distance function, commonly euclidean distance, f learned embedding function by the network, A anchor image, P positive example, N negative example, m margin parameter, [image: $${\left\lfloor x \right\rfloor _ + } = \max \left( {x,0} \right)$$].
However, because the triplet loss is particularly susceptible to the sample triplets (A, P, N), they must be carefully chosen. One technique is hard mining [11, 21, 25], in which a triplet is composed of an anchor, the farthest positive image from the anchor, and the nearest negative image. This can be expressed mathematically as follows:[image: $$\begin{aligned} {L_{hm}} = {\left\lfloor {\max \left( {d\left( {f\left( A \right) ,f\left( P \right) } \right) } \right) - \min \left( {d\left( {f\left( A \right) ,f\left( N \right) } \right) } \right) + m} \right\rfloor _ + } \end{aligned}$$]

 (2)


Chen et al. [2] proposed that instead of a single negative example, they used two negative examples and refer to their loss as quadruplet loss. The triplet is changed into a quadruplet consisting of [image: $$(A, P, N_1, N_2)$$], with (A, P, N1) defined as before and [image: $$N_2$$] being the second closest negative example to the anchor. Mathematically:[image: $$\begin{aligned} L_{{quadruplet}} = &amp; \left\lfloor {\max \left( {d\left( {f\left( A \right),f\left( P \right)} \right)} \right) - \min \left( {d\left( {f\left( A \right),f\left( {N_{1} } \right)} \right)} \right) + m_{1} } \right\rfloor _{ + } \\ &amp; + \left\lfloor {\max \left( {d\left( {f\left( A \right),f\left( P \right)} \right)} \right) - \min \left( {d\left( {f\left( A \right),f\left( {N_{2} } \right)} \right)} \right) + m_{2} } \right\rfloor _{ + } \\ \end{aligned}$$]

 (3)


Where [image: $$m_2$$] a margin constant satisfies [image: $$m_2&lt;m_1$$], [image: $$N_1, N_2$$] are chosen from different classes. This method contributes to increasing the inter-class distance by pushing negative samples further away.
Another adjustment was proposed in [35], where Wieczorek et al. changed the triplet to become [image: $$(A,c_p,c_n)$$] an anchor image A, the centroid of its class [image: $$c_p$$], and [image: $$c_n$$] the centroid of a negative class. They called it centroid triplet loss, Mathematically:[image: $$\begin{aligned} L_{ctl} = {\left\lfloor {d\left( {f\left( A \right) ,{c_P}} \right) - \min \left( {d\left( {f\left( A \right) ,{c_N}} \right) } \right) + m} \right\rfloor _ + } \end{aligned}$$]

 (4)


This work presents a modified version of the CTL loss to emphasize more on the inter-class distance. Our approach is to define a loss function that is subdivided into two distinct terms. The first term is a scaled center loss that attempts to get features as close to their center as possible, while the second term attempts to push features away from the negative centroids behind a defined margin. This can be written as follows:[image: $$\begin{aligned} {L_{mctl}} = {\omega _1}{\left( {d\left( {f\left( A \right) ,{c_p}} \right) } \right) ^2} + {\omega _2}{\left\lfloor {m - \min \left( {d\left( {f\left( A \right) ,{c_N}} \right) } \right) } \right\rfloor _ + }^2 \end{aligned}$$]

 (5)


Where [image: $${\omega _1}$$], [image: $${\omega _2}$$] are hyper-parameters. Choosing [image: $${\omega _1}&lt;{\omega _2}$$], penalizes the inter-class more heavily. To facilitate hyperparameter selection, [image: $$w_2$$] is set such that [image: $$w_2 = (1-w_1)$$].
The main difference between the two loss functions is in how they weight the importance of the inter-class distances. By using a squared distance term in [image: $$L_{mctl}$$], the difference between the feature representation and the positive class centroid is amplified, making it more important to minimize this distance. Additionally, by giving higher weights to inter-class distances, the model is encouraged to place a larger emphasis on separating the individuals based on their unique characteristics, which can help to reduce the misclassification errors and improve the overall performance of the model.

ResNet50
 ResNet501 is a variant of Residual Networks (ResNet) [9] with a depth of 50 layers. The architecture is shown in Fig. 1. It consists of a convolution layer, followed by a max-pooling layer, and four residual blocks with an average pooling layer at the end. A residual block contains a skip connection between its inputs and outputs. Each residual block contains a repeated three chained Conv layers, as shown in Fig. 2. In this study, the last stride is modified to become 1 instead of 2 as proposed in [18], which helps in increasing the spatial dimensions of the feature map before converting it to a vector.[image: ]
Fig. 1ResNet architecture

[image: ]
Fig. 2Resnet Detailed architecture



Network architecture
The network’s architecture is shown in Fig. 2. It is based on [35]. The model is composed of a CNN feature extractor (encoder) and a classifier. The encoder, in this work ResNet50, takes a batch of images, made of C distinct classes with N instances per class; consequently, the batch size is equal to [image: $$C * N$$]. Images are converted into feature map and represented by embedding vectors of dimension d, where [image: $$d = 2048$$] (number of channels in the last conv in resnet50) in this work. These features are used to calculate three losses: triplet loss, center loss, and modified centroid triplet loss (Fig. 3).[image: ]
Fig. 3Model architecture used in [35]


To calculate the classification loss, a classifier is used. The classifier plays an auxiliary role in helping the encoder learn more discriminative features. It consists of a 1D-batch normalization layer, which feeds its output to a linear layer augmented with a softmax activation function(BNNeck [18]). Categorical cross-entropy is used to calculate the classification loss.


Experiments
Two datasets were used: Market-1501 and DukeMTMC-reID. The model was trained and tested in Colab environment on GPU Tesla V100-SXM2–16GB.
Market-1501 was presented for the first time in 2015. The dataset is composed of images collected in front of a supermarket at Tsinghua University for 1501 distinct pedestrians, which is how it got its name. The dataset contains 32668 images of a 128 * 64 shape captured by six cameras.
DukeMTMC-reID is a subset of a bigger dataset DukeMTMC. Data is collected at Duke University from eight cameras. In total, the dataset contains 36411 images which are divided as follows: 16, 522 of 702 individuals for train, 2228 of an additional 702 for query, and 17, 661 for search gallery.
Implementation details
The implementation is based on.2. The same training procedure in [35] was followed with one sole modification, the replacement of the CTL loss with MCTL of [image: $$w_1=0.1$$], [image: $$w_2=0.9$$].
During training, data is augmented with: random horizontal flip, random erasing, and random cropping. To optimize the model’s parameters, two optimizers were used: Adam and Stochastic gradient descent SGD. Adam optimizer was used to train the model for 120 epochs, with a multi-step scheduler that reduces its learning rate LR by a factor of 10 at epoch 40th, 70th epoch starting with an LR of 0.00035. SGD was used to optimize the center loss separately with an LR of 0.5. The total loss is a weighted sum of the four losses, where all losses are weighted with 1, except center loss is weighted by [image: $$5e-4$$]. The centroids are calculated from raw unnormalized features. Each sample from a class is treated as a query and the rest samples are used to calculate the centroids by averaging their features. Re-sampling is omitted because it adds noises to centroids vectors. Additionally, label smoothing is used in cross-entropy loss. During inference, the centroids are calculated first. Each class is represented with its centroid, which is the mean of all samples belonging to this class. Then query images are matched to centroids instead of gallery images.


Results and discussion
In Tables, 1, 2 model results are presented alongside those of other state-of-the-art models, highlighting the best results in bold. MCTL loss increased the model’s performance greatly across all criteria. the results ensured that the proposed approach outperformed research approaches with the same tested datasets.Table 1Person re-identification results on market-1501 dataset


	Market-1501

	Model
	mAP
	rank1
	rank5
	rank10

	Unsupervised Pre-training [5] 
	96.21
	97.03
	 	 
	RGT & RGPR [6]
	95.6
	96.9
	 	 
	LA-Transformer [24]
	98.27
	98.27
	 	 
	st-ReID [28]
	95.5
	98.0
	98.9
	99.1

	Ctl model [35]
	98.3
	98.0
	98.6
	99.5

	Ours-Mctl
	[image: $$\mathbf {98.63}$$]
	[image: $$\mathbf {98.4}$$]
	[image: $$\mathbf {99.1}$$]
	[image: $$\mathbf {99.6}$$]


*The numbers reported in the paper are different from this reproted here, for more info, please visit their https://​github.​com/​DengpanFu/​LUPerson


Table 2Person re-identification results on DukeMTMC-reID dataset


	DukeMTMC-reID

	Model
	mAP
	rank1
	rank5
	rank10

	Unsupervised Pre-training
	92.77
	93.99
	 	 
	st-ReID
	92.7
	94.5
	 	 
	Viewpoint-Aware Loss [44]
	91.8
	93.9
	96.5
	 
	Ctl model
	96.1
	95.6
	96.2
	97.9

	Ours-Mctl
	[image: $$\mathbf {97.3}$$]
	[image: $$\mathbf {96.8}$$]
	[image: $$\mathbf {98.4}$$]
	[image: $$\mathbf {98.9}$$]




CMC for both datasets is shown in Fig. 4. Zooming in Fig. 4 to enlarge the interval [image: $$[96, 100]\%$$] and this is shown in Fig. 5; this illustrates that the proposed approach is effective and the proposed MCTL can be adopted in problems of researches. As shown in Fig. 5, the model reached its maximum matching rate of [image: $$99.9\%$$] on market-1501 at rank-42, while it reached its maximum of [image: $$99.5\%$$] at rank-32 on DukeMTMC-reID.[image: ]
Fig. 4CMC plots for results on Market and Duke datasets

[image: ]
Fig. 5Zoomed plot for CMC results on Market and Duke datasets



Conclusion
Modified centroid triplet loss for Reid model was presented in this article to improve performance. The developed method was validated on two datasets: the Market-1501 and DukeMTMC-ReID. The results show outperformance of the adopted approach compared to the already existing one. Despite this enhancement, additional research should be conducted. For example: experiments with various base models, investigation of an euclidean classification loss function and investigation of the model’s generality in cross-domain tasks.
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Footnotes
1Only the encoder part of ResNet50 is shown.

 

2https://​github.​com/​mikwieczorek/​centroids-reid Github official repository for [35].
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