Skip to main content

Table 4 The testing performance of the state-of-the-art machine learning models on the multi-classification task of the UNSW-NB15 and NSL-KDD Dataset

From: Network intrusion detection using feature fusion with deep learning

Model

Refs.

Dataset

Accuracy

Precision

Recall

 

(%)

(%)

(%)

Logistic Regression

[18]

UNSW-NB15

65.53

76.91

65.54

Support Vector Machine

[18]

UNSW-NB15

61.09

47.47

62.00

Decision Tree

[18]

UNSW-NB15

66.03

79.82

66.04

scale-hybrid-IDS-AlertNet

[33]

UNSW-NB15

66.00

62.30

66.00

MDNN

[34]

UNSW-NB15

62.87

76.00

63.00

MCNN

[35]

UNSW-NB15

69.46

84.00

69.00

Naive Bayes

[35]

UNSW-NB15

45.22

29.67

38.62

J48

[35]

UNSW-NB15

51.50

28.18

21.48

Random Forest

[35]

UNSW-NB15

68.09

62.51

35.15

Bagging

[35]

UNSW-NB15

51.45

32.85

21.45

Adaboost

[35]

UNSW-NB15

51.50

28.18

21.48

DT & GA

[39]

UNSW-NB15

84.33

53.20

52.23

Our proposed model

–

UNSW-NB15

77.84

86.04

69.50

scale-hybrid-IDS-AlertNet

[33]

NSL-KDD

78.50

81.00

78.50

MDNN

[34]

NSL-KDD

77.55

81.23

77.55

MCNN

[35]

NSL-KDD

81.1

83

81

Naive Bayes

[35]

NSL-KDD

72.73

76.1

72.7

J48

[35]

NSL-KDD

74.99

79.6

75.0

Random Forest

[35]

NSL-KDD

76.45

82.1

76.4

Bagging

[35]

NSL-KDD

74.83

78.3

74.8

AE

[26]

NSL-KDD

81.21

87.85

82.04

LSTM

[26]

NSL-KDD

67.17

82.34

72.49

MLP

[26]

NSL-KDD

68.26

85.05

73.96

L-SVM

[26]

NSL-KDD

69.73

86.77

74.09

Q-SVM

[26]

NSL-KDD

75.11

87.22

77.94

LDA

[26]

NSL-KDD

76.49

80.82

76.72

QDA

[26]

NSL-KDD

64.36

78.26

70.38

Our proposed model

–

NSL-KDD

86.81

86.86

86.80